Magnetization Response Spectroscopy of Superparamagnetic Nanoparticles under Mixing Frequency Fields

Kai Wu, Akash Batra, Shray Jain, Jian Ping Wang

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

In this paper, we report a mixing frequency method (MFM) that has two driving fields, in which one is a high frequency of fH=300 kHz and the other is a low frequency field with fL=500 Hz. Two traditional magnetic particle imaging technologies are compared with an MFM, one with driving field frequency of fM=25 kHz and the other at 10 kHz. An assumed iron-cobalt magnetic nanoparticle (MNP) suspension of which the sizes follow normal distribution is modeled and their magnetic response is modeled by Langevin function. Odd harmonics induced from the nonlinear magnetic response of MNPs under driving fields are extracted from the magnetization response spectroscopy. The signal-to-noise ratio, harmonic strengths at field-free points (FFPs) over strengths at non-FFPs, is defined as an evaluation standard to assess which technology is better for imaging spatial distribution of MNPs.

Original languageEnglish (US)
Article number7369960
JournalIEEE Transactions on Magnetics
Volume52
Issue number7
DOIs
StatePublished - Jul 2016

Bibliographical note

Funding Information:
This work was supported in part by the University of Minnesota through the MNDrive Program, in part by the National Science Foundation within the Institute of Engineering in Medicine through the MRSEC Facility Program, in part by the Distinguished McKnight University Professorship through the UROP Program, and in part by the MNDrive STEM program.

Publisher Copyright:
© 2016 IEEE.

Fingerprint

Dive into the research topics of 'Magnetization Response Spectroscopy of Superparamagnetic Nanoparticles under Mixing Frequency Fields'. Together they form a unique fingerprint.

Cite this