Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy

S. Yuan, P. L. Kuhns, A. P. Reyes, J. S. Brooks, M. J R Hoch, V. Srivastava, R. D. James, S. El-Khatib, C. Leighton

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

For certain compositions Ni-Mn-Sn and related magnetic shape-memory alloys undergo a martensitic transition at temperatures in the range 300-400 K, with the emergence of novel magnetic properties below the transition. While Ni50Mn50 is an antiferromagnet, substitution of Sn on some fraction of the Mn sites in Ni50Mn50-xSnx leads to competing ferromagnetic (F) and antiferromagnetic (AF) phases at low temperatures. Details of this magnetic phase coexistence are, however, significantly lacking, particularly with respect to the AF phase. The present investigations use zero applied magnetic field Mn55 NMR as a local probe of the magnetic properties of the alloy Ni50Mn50-xSnx with x=10. Rich multipeak spectra are observed, and the various components are definitively assigned to nanoscale F or AF regions. Measurements of the static nuclear hyperfine field distributions as a function of temperature, and in small applied fields, together with nuclear relaxation rates provide detailed information on the size distributions, relative concentrations, and physical natures of these F and AF regions. The results show that the nanoscale magnetic features of the x=10 system are substantially more complex than previous studies have suggested. We argue that the general approach used in these experiments is applicable to other such complex metal alloys, and could yield many additional insights.

Original languageEnglish (US)
Article number214421
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume91
Issue number21
DOIs
StatePublished - Jun 16 2015

Bibliographical note

Publisher Copyright:
© 2015 American Physical Society.

Fingerprint

Dive into the research topics of 'Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy'. Together they form a unique fingerprint.

Cite this