Abstract
Bacteriophage shape the composition and function of microbial communities. Yet it remains difficult to predict the effect of phage on microbial interactions. Specifically, little is known about how phage influence mutualisms in networks of cross-feeding bacteria. We mathematically modeled the impacts of phage in a synthetic microbial community in which Escherichia coli and Salmonella enterica exchange essential metabolites. In this model, independent phage attack of either species was sufficient to temporarily inhibit both members of the mutualism; however, the evolution of phage resistance facilitated yields similar to those observed in the absence of phage. In laboratory experiments, attack of S. enterica with P22vir phage followed these modeling expectations of delayed community growth with little change in the final yield of bacteria. In contrast, when E. coli was attacked with T7 phage, S. enterica, the nonhost species, reached higher yields compared with no-phage controls. T7 infection increased nonhost yield by releasing consumable cell debris, and by driving evolution of partially resistant E. coli that secreted more carbon. Our results demonstrate that phage can have extensive indirect effects in microbial communities, that the nature of these indirect effects depends on metabolic and evolutionary mechanisms, and that knowing the degree of evolved resistance leads to qualitatively different predictions of bacterial community dynamics in response to phage attack.
Original language | English (US) |
---|---|
Pages (from-to) | 123-134 |
Number of pages | 12 |
Journal | ISME Journal |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2020 |
Bibliographical note
Funding Information:Acknowledgements We would like to thank Ian J. Molineaux (UT-Austin) for the phage isolates, and E. Adamowicz, S. Hammarlund, and the Institute of Molecular Virology at the University of Minnesota for constructive conversations; LF was funded by a Fellowship on the NIH T32 AI83196 training grant and an NIH RO1 GM121498-01A1 grant.