TY - GEN
T1 - LPMiner
T2 - 1st IEEE International Conference on Data Mining, ICDM'01
AU - Seno, Masakazu
AU - Karypis, George
PY - 2001
Y1 - 2001
N2 - Over the years, a variety of algorithms for finding frequent itemsets in very large transaction databases have been developed. The key feature in most of these algorithms is that they use a constant support constraint to control the inherently exponential complexity of the problem. In general, itemsets that contain only a few items will tend to be interesting if they have a high support, whereas long itemsets can still be interesting even if their support is relatively small. Ideally, we desire to have an algorithm that finds all the frequent itemsets whose support decreases as a function of their length. In this paper we present an algorithm called LPMinel, that finds all itemsets that satisfy a length-decreasing support constraint. Our experimental evaluation shows that LPMiner is up to two orders of magnitude faster than the FP-growth algorithm for finding itemsets at a constant support constraint, and that its runtime increases gradually as the average length of the transactions (and the discovered itemsets) increases.
AB - Over the years, a variety of algorithms for finding frequent itemsets in very large transaction databases have been developed. The key feature in most of these algorithms is that they use a constant support constraint to control the inherently exponential complexity of the problem. In general, itemsets that contain only a few items will tend to be interesting if they have a high support, whereas long itemsets can still be interesting even if their support is relatively small. Ideally, we desire to have an algorithm that finds all the frequent itemsets whose support decreases as a function of their length. In this paper we present an algorithm called LPMinel, that finds all itemsets that satisfy a length-decreasing support constraint. Our experimental evaluation shows that LPMiner is up to two orders of magnitude faster than the FP-growth algorithm for finding itemsets at a constant support constraint, and that its runtime increases gradually as the average length of the transactions (and the discovered itemsets) increases.
UR - http://www.scopus.com/inward/record.url?scp=47349084243&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=47349084243&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:47349084243
SN - 0769511198
SN - 9780769511191
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 505
EP - 512
BT - Proceedings - 2001 IEEE International Conference on Data Mining, ICDM'01
Y2 - 29 November 2001 through 2 December 2001
ER -