Abstract
Surfaces bombarded with energetic ions may develop a rough or a ripple surface morphology. The ripple formation has been successfully described by the instability caused by preferential erosion, the ripple wavelength being determined by the competition between surface erosion and thermally activated diffusion. However, as recent experiments and computer simulations have shown, ripple formation takes place even at the low temperatures, when thermally activated processes are suppressed. In this paper we propose a theory to explain low-temperature ripple formation based on the ion-induced effective surface diffusion.
Original language | English (US) |
---|---|
Pages (from-to) | 249-254 |
Number of pages | 6 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 540 |
State | Published - 1999 |
Externally published | Yes |
Event | Proceedings of the 1998 MRS Fall Meeting - The Symposium 'Advanced Catalytic Materials-1998' - Boston, MA, USA Duration: Nov 30 1998 → Dec 3 1998 |