TY - JOUR
T1 - Low-Dose Dexamethasone Treatment Promotes the Pro-Survival Signalling Pathway in the Adult Rat Prefrontal Cortex
AU - Drakulić, D.
AU - Veličković, N.
AU - Stanojlović, M.
AU - Grković, I.
AU - Mitrović, N.
AU - Lavrnja, I.
AU - Horvat, A.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/7
Y1 - 2013/7
N2 - Synthetic glucocorticoid dexamethasone (DEX), a highly potent anti-inflammatory and immunosuppressive agent, is widely used in the treatment of brain cancer, as well as for inflammatory and autoimmune diseases. The present study aimed to determine whether low-dose subchronic DEX treatment (100 μg/kg for eight consecutive days) exerts long-term effects on apoptosis in the adult rat prefrontal cortex (PFC) by examining the expression of cell death-promoting molecules [poly(ADP-ribose) polymerase (PARP), p53, procaspase 3, cleaved caspase 3, Bax] and cell-survival molecules (AKT, Bcl-2). The results obtained revealed that body, thymus and adrenal gland weights, as well corticosterone levels, in the serum and PFC were reduced 1 day after the last DEX injection. In the PFC, DEX caused activation of AKT, augmentation of pro-survival Bcl-2 protein and an enhanced Bcl-2/Bax protein ratio, as well Bcl-2 translocation to the mitochondria. An unaltered profile with respect to the protein expression of apoptotic molecules PARP, procaspase 3 and Bax was detected, whereas p53 protein was decreased. Reverse transcriptase -polymerase chain reaction analysis showed a decrease of p53 mRNA levels and no significant difference in Bcl-2 and Bax mRNA expression in DEX-treated rats. Finally, a DNA fragmentation assay and Fluoro-Jade staining demonstrated no considerable changes in apoptosis in the rat PFC. Our findings support the concept that low-dose DEX creates a hypocorticoid state in the brain and also indicate that subchronic DEX treatment activates the pro-survival signalling pathway but does not change apoptotic markers in the rat PFC. This mechanism might be relevant for the DEX-induced apoptosis resistance observed during and after chemotherapy of patients with brain tumours.
AB - Synthetic glucocorticoid dexamethasone (DEX), a highly potent anti-inflammatory and immunosuppressive agent, is widely used in the treatment of brain cancer, as well as for inflammatory and autoimmune diseases. The present study aimed to determine whether low-dose subchronic DEX treatment (100 μg/kg for eight consecutive days) exerts long-term effects on apoptosis in the adult rat prefrontal cortex (PFC) by examining the expression of cell death-promoting molecules [poly(ADP-ribose) polymerase (PARP), p53, procaspase 3, cleaved caspase 3, Bax] and cell-survival molecules (AKT, Bcl-2). The results obtained revealed that body, thymus and adrenal gland weights, as well corticosterone levels, in the serum and PFC were reduced 1 day after the last DEX injection. In the PFC, DEX caused activation of AKT, augmentation of pro-survival Bcl-2 protein and an enhanced Bcl-2/Bax protein ratio, as well Bcl-2 translocation to the mitochondria. An unaltered profile with respect to the protein expression of apoptotic molecules PARP, procaspase 3 and Bax was detected, whereas p53 protein was decreased. Reverse transcriptase -polymerase chain reaction analysis showed a decrease of p53 mRNA levels and no significant difference in Bcl-2 and Bax mRNA expression in DEX-treated rats. Finally, a DNA fragmentation assay and Fluoro-Jade staining demonstrated no considerable changes in apoptosis in the rat PFC. Our findings support the concept that low-dose DEX creates a hypocorticoid state in the brain and also indicate that subchronic DEX treatment activates the pro-survival signalling pathway but does not change apoptotic markers in the rat PFC. This mechanism might be relevant for the DEX-induced apoptosis resistance observed during and after chemotherapy of patients with brain tumours.
KW - Apoptosis
KW - Dexamethasone
KW - Prefrontal cortex
KW - Rat
UR - http://www.scopus.com/inward/record.url?scp=84879158644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879158644&partnerID=8YFLogxK
U2 - 10.1111/jne.12037
DO - 10.1111/jne.12037
M3 - Article
C2 - 23551329
AN - SCOPUS:84879158644
SN - 0953-8194
VL - 25
SP - 605
EP - 616
JO - Journal of Neuroendocrinology
JF - Journal of Neuroendocrinology
IS - 7
ER -