Abstract
A variety of optical measurements, including retardance/birefringence change, have revealed transient optical and structural changes associated with action potential propagation. Those changes can be understood better by developing new techniques and improving the current approaches. To detect transient retardance changes in a stimulated nerve, we propose a differential phase technique utilizing two orthogonal polarization channels of a polarization-maintaining fiber based interferometer. The superior sensitivity of the system (10.4 pm) is promising to achieve a non-contact optical measurement of action potential propagation in reflection mode, and to study the transient retardance changes during neural activity.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 |
Pages | 6318-6320 |
Number of pages | 3 |
DOIs | |
State | Published - 2009 |
Event | 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States Duration: Sep 2 2009 → Sep 6 2009 |
Other
Other | 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 |
---|---|
Country/Territory | United States |
City | Minneapolis, MN |
Period | 9/2/09 → 9/6/09 |
PubMed: MeSH publication types
- Journal Article
- Research Support, N.I.H., Extramural