Low Adsorption of Magnetite Nanoparticles with Uniform Polyelectrolyte Coatings in Concentrated Brine on Model Silica and Sandstone

Esteban E. Urenã-Benavides, Edward L. Lin, Edward L. Foster, Zheng Xue, Michael R. Ortiz, Yunping Fei, Eric S. Larsen, Anthony A. Kmetz, Bonnie A. Lyon, Ehsan Moaseri, Christopher W. Bielawski, Kurt D. Pennell, Christopher J. Ellison, Keith P. Johnston

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

In subsurface imaging and oil recovery where temperatures and salinities are high, it is challenging to design polymer-coated nanoparticles with low retention (high mobility) in porous rock. Herein, the grafting of poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic acid) (poly(AMPS-co-AA)) on magnetic iron oxide nanoparticles was sufficiently uniform to achieve low adsorption on model colloidal silica and crushed Berea sandstone in highly concentrated API brine (8% NaCl and 2% CaCl2 by weight). The polymer shell was grafted via amide bonds to an aminosilica layer, which was grown on silica-coated magnetite nanoparticles. The particles were found to be stable against aggregation in American Petroleum Institute (API) brine at 90°C for 24 h. For IO nanoparticles with 23% polymer content, Langmuir adsorption capacities on colloidal silica and crushed Berea Sandstone in batch experiments were extremely low at only 0.07 and 0.09 mg of IO/m2, respectively. Furthermore, upon injection of a 2.5 mg/mL IO suspension in API brine in a column packed with crushed Berea sandstone, the dynamic adsorption of IO nanoparticles was only 0.05 ± 0.01 mg/m2, which is consistent with the batch experiment results. The uniformity and high concentration of solvated poly(AMPS-co-AA) chains on the IO surfaces provided electrosteric stabilization of the nanoparticle dispersions and also weakened the interactions of the nanoparticles with negatively charged silica and sandstone surfaces despite the very large salinities.

Original languageEnglish (US)
Pages (from-to)1522-1532
Number of pages11
JournalIndustrial and Engineering Chemistry Research
Volume55
Issue number6
DOIs
StatePublished - Feb 17 2016

Bibliographical note

Funding Information:
This work was supported by the Advanced Energy Consortium (member companies include Shell, Petrobras, Statoil, Schlumberger, BP America Inc., Total, and Repsol), the Department of Energy Center for Subsurface Energy Security, and the Welch Foundation (F-1319).

Publisher Copyright:
© 2016 American Chemical Society.

Fingerprint

Dive into the research topics of 'Low Adsorption of Magnetite Nanoparticles with Uniform Polyelectrolyte Coatings in Concentrated Brine on Model Silica and Sandstone'. Together they form a unique fingerprint.

Cite this