TY - JOUR
T1 - Long-term resting EEG correlates of repetitive mild traumatic brain injury and loss of consciousness
T2 - alterations in alpha-beta power
AU - Franke, Laura M.
AU - Perera, Robert A.
AU - Sponheim, Scott R.
N1 - Publisher Copyright:
Copyright © 2023 Franke, Perera and Sponheim.
PY - 2023
Y1 - 2023
N2 - Objective: Long-term changes to EEG spectra after mild traumatic brain injury (mTBI, i.e., concussion) have been reported; however, the role of injury characteristics in long-term EEG changes is unclear. It is also unclear how any chronic EEG changes may underlie either subjective or objective cognitive difficulties, which might help explain the variability in recovery after mTBI. Methods: This study included resting-state high-density electroencephalography (EEG) and mTBI injury data from 340 service members and veterans collected on average 11 years after injury as well as measures of objective and subjective cognitive functioning. The average absolute power within standard bands was computed across 11 spatial regions of the scalp. To determine how variation in brain function was accounted for by injury characteristics and aspects of cognition, we used regression analyses to investigate how EEG power was predicted by mTBI history characteristics [number, number with post-traumatic amnesia and witnessed loss of consciousness (PTA + LOC), context of injury (combat or non-combat), potentially concussive blast exposures], subjective complaints (TBIQOL General Cognitive and Executive Function Concerns), and cognitive performance (NIH Toolbox Fluid Intelligence and premorbid IQ). Results: Post-traumatic amnesia (PTA) and loss of consciousness (LOC), poorer cognitive performance, and combat experience were associated with reduced power in beta frequencies. Executive function complaints, lower premorbid IQ, poorer cognitive performance, and higher psychological distress symptoms were associated with greater power of delta frequencies. Multiple regression confirmed the relationship between PTA + LOC, poor cognitive performance, cognitive complaints, and reduced power in beta frequencies and revealed that repetitive mTBI was associated with a higher power in alpha and beta frequencies. By contrast, neither dichotomous classification of the presence and absence of mTBI history nor blast exposures showed a relationship with EEG power variables. Conclusion: Long-term alterations in resting EEG spectra measures of brain function do not appear to reflect any lasting effect of a history of mTBI or blast exposures. However, power in higher frequencies reflects both injury characteristics and subjective and objective cognitive difficulties, while power in lower frequencies is related to cognitive functions and psychological distress associated with poor long-term outcomes after mTBI.
AB - Objective: Long-term changes to EEG spectra after mild traumatic brain injury (mTBI, i.e., concussion) have been reported; however, the role of injury characteristics in long-term EEG changes is unclear. It is also unclear how any chronic EEG changes may underlie either subjective or objective cognitive difficulties, which might help explain the variability in recovery after mTBI. Methods: This study included resting-state high-density electroencephalography (EEG) and mTBI injury data from 340 service members and veterans collected on average 11 years after injury as well as measures of objective and subjective cognitive functioning. The average absolute power within standard bands was computed across 11 spatial regions of the scalp. To determine how variation in brain function was accounted for by injury characteristics and aspects of cognition, we used regression analyses to investigate how EEG power was predicted by mTBI history characteristics [number, number with post-traumatic amnesia and witnessed loss of consciousness (PTA + LOC), context of injury (combat or non-combat), potentially concussive blast exposures], subjective complaints (TBIQOL General Cognitive and Executive Function Concerns), and cognitive performance (NIH Toolbox Fluid Intelligence and premorbid IQ). Results: Post-traumatic amnesia (PTA) and loss of consciousness (LOC), poorer cognitive performance, and combat experience were associated with reduced power in beta frequencies. Executive function complaints, lower premorbid IQ, poorer cognitive performance, and higher psychological distress symptoms were associated with greater power of delta frequencies. Multiple regression confirmed the relationship between PTA + LOC, poor cognitive performance, cognitive complaints, and reduced power in beta frequencies and revealed that repetitive mTBI was associated with a higher power in alpha and beta frequencies. By contrast, neither dichotomous classification of the presence and absence of mTBI history nor blast exposures showed a relationship with EEG power variables. Conclusion: Long-term alterations in resting EEG spectra measures of brain function do not appear to reflect any lasting effect of a history of mTBI or blast exposures. However, power in higher frequencies reflects both injury characteristics and subjective and objective cognitive difficulties, while power in lower frequencies is related to cognitive functions and psychological distress associated with poor long-term outcomes after mTBI.
KW - EEG
KW - chronic effects
KW - cognition
KW - loss of consciousness
KW - mild traumatic brain injury
KW - military
KW - post-traumatic amnesia
UR - http://www.scopus.com/inward/record.url?scp=85170364287&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85170364287&partnerID=8YFLogxK
U2 - 10.3389/fneur.2023.1241481
DO - 10.3389/fneur.2023.1241481
M3 - Article
C2 - 37706009
AN - SCOPUS:85170364287
SN - 1664-2295
VL - 14
JO - Frontiers in Neurology
JF - Frontiers in Neurology
M1 - 1241481
ER -