Abstract
BACKGROUND: Anthropogenic activities have increased the inputs of atmospheric reactive nitrogen (N) into terrestrial ecosystems, affecting soil carbon stability and microbial communities. Previous studies have primarily examined the effects of nitrogen deposition on microbial taxonomy, enzymatic activities, and functional processes. Here, we examined various functional traits of soil microbial communities and how these traits are interrelated in a Mediterranean-type grassland administrated with 14 years of 7 g m -2 year -1 of N amendment, based on estimated atmospheric N deposition in areas within California, USA, by the end of the twenty-first century.
RESULTS: Soil microbial communities were significantly altered by N deposition. Consistent with higher aboveground plant biomass and litter, fast-growing bacteria, assessed by abundance-weighted average rRNA operon copy number, were favored in N deposited soils. The relative abundances of genes associated with labile carbon (C) degradation (e.g., amyA and cda) were also increased. In contrast, the relative abundances of functional genes associated with the degradation of more recalcitrant C (e.g., mannanase and chitinase) were either unchanged or decreased. Compared with the ambient control, N deposition significantly reduced network complexity, such as average degree and connectedness. The network for N deposited samples contained only genes associated with C degradation, suggesting that C degradation genes became more intensely connected under N deposition.
CONCLUSIONS: We propose a conceptual model to summarize the mechanisms of how changes in above- and belowground ecosystems by long-term N deposition collectively lead to more soil C accumulation. Video Abstract.
Original language | English (US) |
---|---|
Article number | 112 |
Journal | Microbiome |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
Bibliographical note
Funding Information:This study was funded by grants from the National Natural Science Foundation of China (32161123002/41825016/41877048), the US Department of Energy, the US National Science Foundation (DEB-2129235/DEB-0092642/0445324), the Packard Foundation, the Morgan Family Foundation, the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0503), and the French EC2CO Program (project INTERACT).
Publisher Copyright:
© 2022, The Author(s).
Keywords
- GeoChip
- Global change
- High-throughput sequencing
- Nitrogen deposition
- Soil microbial community
- Soil Microbiology
- Ecosystem
- Soil
- Carbon
- Nitrogen/metabolism
- Microbiota/genetics
PubMed: MeSH publication types
- Research Support, Non-U.S. Gov't
- Research Support, U.S. Gov't, Non-P.H.S.
- Video-Audio Media
- Journal Article