Liquid hydrogen in protonic chabazite

Adriano Zecchina, Silvia Bordiga, Jenny G. Vitillo, Gabriele Ricchiardi, Carlo Lamberti, Giuseppe Spoto, Morten Bjørgen, Karl Petter Lillerud

Research output: Contribution to journalArticlepeer-review

187 Scopus citations

Abstract

Due to its fully reversible nature, H2 storage by molecular adsorption could represent an advantage with respect to dissociative processes, where kinetic effects during the charging and discharging processes are present. A drawback of this strategy is represented by the extremely weak interactions that require low temperature and high pressure. High surface area materials hosting polarizing sites can represent a viable way toward more favorable working conditions. Of these, in this contribution, we have studied hydrogen adsorption in a series of zeolites using volumetric techniques and infrared spectroscopy at 15 K. We have found that in H-SSZ-13 zeolite the cooperative role played by high surface area, internal wall topology, and presence of high binding energy sites (protons) allows hydrogen to densify inside the nanopores at favorable temperature and pressure conditions.

Original languageEnglish (US)
Pages (from-to)6361-6366
Number of pages6
JournalJournal of the American Chemical Society
Volume127
Issue number17
DOIs
StatePublished - May 4 2005

Fingerprint Dive into the research topics of 'Liquid hydrogen in protonic chabazite'. Together they form a unique fingerprint.

Cite this