Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice

Hongming Su, Hong Guo, Xiaoxue Qiu, Te Yueh Lin, Chao Qin, Gail Celio, Peter Yong, Mark Senders, Xianlin Han, David A. Bernlohr, Xiaoli Chen

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.

Original languageEnglish (US)
Article number6729
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, Springer Nature Limited.

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice'. Together they form a unique fingerprint.

Cite this