Abstract
This work develops analysis and algorithms for solving a class of bilevel optimization problems where the lower-level (LL) problems have linear constraints. Most of the existing approaches for constrained bilevel problems rely on value function-based approximate reformulations, which suffer from issues such as non-convex and non-differentiable constraints. In contrast, in this work, we develop an implicit gradient-based approach, which is easy to implement, and is suitable for machine learning applications. We first provide an in-depth understanding of the problem, by showing that the implicit objective for such problems is in general non-differentiable. However, if we add some small (linear) perturbation to the LL objective, the resulting implicit objective becomes differentiable almost surely. This key observation opens the door for developing (deterministic and stochastic) gradient-based algorithms similar to the state-of-the-art ones for unconstrained bi-level problems. We show that when the implicit function is assumed to be strongly-convex, convex, and weakly-convex, the resulting algorithms converge with guaranteed rate. Finally, we experimentally corroborate the theoretical findings and evaluate the performance of the proposed framework on numerical and adversarial learning problems.
Original language | English (US) |
---|---|
Pages (from-to) | 16291-16325 |
Number of pages | 35 |
Journal | Proceedings of Machine Learning Research |
Volume | 202 |
State | Published - 2023 |
Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: Jul 23 2023 → Jul 29 2023 |
Bibliographical note
Publisher Copyright:© 2023 Proceedings of Machine Learning Research. All rights reserved.