Abstract
We present a new systematic procedure to find low-order linear fractional representations of systems with polynomial parametric uncertainty. The idea is to exploit the structure of the uncertainty to decompose a multidimensional polynomial matrix into sums and products of simple factors for which minimal linear fractional representations can be obtained. This approach is implemented in the structured tree decomposition algorithm, which generates a tree whose leaves are simple factors. An example is presented to illustrate the advantages of this approach.
Original language | English (US) |
---|---|
Pages (from-to) | 1263-1271 |
Number of pages | 9 |
Journal | Automatica |
Volume | 33 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1997 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was supported in part by grants from the NSF through the IMA and by Honeywell Corporation.
Keywords
- Multidimensional systems
- Robust control
- Structured singular value
- Uncertainty