Linear bubble model of abnormal grain growth

W. W. Mullins, Jorge Viñals

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

A linear bubble model of grain growth is introduced to study the conditions under which an isolated grain can grow to a size much larger than the surrounding matrix average (abnormal growth). We first consider the case of bubbles of two different types such that the permeability of links joining unlike bubbles is larger than that of like bubbles (a simple model of grain boundary anisotropy). Stable abnormal growth is found both by mean field analysis and direct numerical solution. We next study the role of grain boundary pinning (e.g., due to impurities or precipitate phases) by introducing a linear bubble model that includes lower and upper thresholds in the driving force for bubble growth. The link permeability is assumed finite for driving forces above the upper threshold, zero below the lower threshold, and hysteretic in between. Abnormal growth is also observed in this case.

Original languageEnglish (US)
Pages (from-to)2945-2954
Number of pages10
JournalActa Materialia
Volume50
Issue number11
DOIs
StatePublished - Jun 28 2002
Externally publishedYes

Fingerprint

Grain growth
Grain boundaries
Joining
Precipitates
Anisotropy
Impurities

Keywords

  • Abnormal grain growth
  • Grain boundary anisotropy

Cite this

Linear bubble model of abnormal grain growth. / Mullins, W. W.; Viñals, Jorge.

In: Acta Materialia, Vol. 50, No. 11, 28.06.2002, p. 2945-2954.

Research output: Contribution to journalArticle

Mullins, W. W. ; Viñals, Jorge. / Linear bubble model of abnormal grain growth. In: Acta Materialia. 2002 ; Vol. 50, No. 11. pp. 2945-2954.
@article{4f5a8a75addf43f59ffa14b3c749e59c,
title = "Linear bubble model of abnormal grain growth",
abstract = "A linear bubble model of grain growth is introduced to study the conditions under which an isolated grain can grow to a size much larger than the surrounding matrix average (abnormal growth). We first consider the case of bubbles of two different types such that the permeability of links joining unlike bubbles is larger than that of like bubbles (a simple model of grain boundary anisotropy). Stable abnormal growth is found both by mean field analysis and direct numerical solution. We next study the role of grain boundary pinning (e.g., due to impurities or precipitate phases) by introducing a linear bubble model that includes lower and upper thresholds in the driving force for bubble growth. The link permeability is assumed finite for driving forces above the upper threshold, zero below the lower threshold, and hysteretic in between. Abnormal growth is also observed in this case.",
keywords = "Abnormal grain growth, Grain boundary anisotropy",
author = "Mullins, {W. W.} and Jorge Vi{\~n}als",
year = "2002",
month = "6",
day = "28",
doi = "10.1016/S1359-6454(02)00121-0",
language = "English (US)",
volume = "50",
pages = "2945--2954",
journal = "Acta Materialia",
issn = "1359-6454",
publisher = "Elsevier Limited",
number = "11",

}

TY - JOUR

T1 - Linear bubble model of abnormal grain growth

AU - Mullins, W. W.

AU - Viñals, Jorge

PY - 2002/6/28

Y1 - 2002/6/28

N2 - A linear bubble model of grain growth is introduced to study the conditions under which an isolated grain can grow to a size much larger than the surrounding matrix average (abnormal growth). We first consider the case of bubbles of two different types such that the permeability of links joining unlike bubbles is larger than that of like bubbles (a simple model of grain boundary anisotropy). Stable abnormal growth is found both by mean field analysis and direct numerical solution. We next study the role of grain boundary pinning (e.g., due to impurities or precipitate phases) by introducing a linear bubble model that includes lower and upper thresholds in the driving force for bubble growth. The link permeability is assumed finite for driving forces above the upper threshold, zero below the lower threshold, and hysteretic in between. Abnormal growth is also observed in this case.

AB - A linear bubble model of grain growth is introduced to study the conditions under which an isolated grain can grow to a size much larger than the surrounding matrix average (abnormal growth). We first consider the case of bubbles of two different types such that the permeability of links joining unlike bubbles is larger than that of like bubbles (a simple model of grain boundary anisotropy). Stable abnormal growth is found both by mean field analysis and direct numerical solution. We next study the role of grain boundary pinning (e.g., due to impurities or precipitate phases) by introducing a linear bubble model that includes lower and upper thresholds in the driving force for bubble growth. The link permeability is assumed finite for driving forces above the upper threshold, zero below the lower threshold, and hysteretic in between. Abnormal growth is also observed in this case.

KW - Abnormal grain growth

KW - Grain boundary anisotropy

UR - http://www.scopus.com/inward/record.url?scp=0037189235&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037189235&partnerID=8YFLogxK

U2 - 10.1016/S1359-6454(02)00121-0

DO - 10.1016/S1359-6454(02)00121-0

M3 - Article

AN - SCOPUS:0037189235

VL - 50

SP - 2945

EP - 2954

JO - Acta Materialia

JF - Acta Materialia

SN - 1359-6454

IS - 11

ER -