Linear and nonlinear rheological behavior of fibrillar methylcellulose hydrogels

John W. McAllister, Joseph R. Lott, Peter W. Schmidt, Robert L. Sammler, Frank S. Bates, Timothy P. Lodge

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18-2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model.

Original languageEnglish (US)
Pages (from-to)538-542
Number of pages5
JournalACS Macro Letters
Volume4
Issue number5
DOIs
StatePublished - May 19 2015

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

MRSEC Support

  • Shared

Fingerprint

Dive into the research topics of 'Linear and nonlinear rheological behavior of fibrillar methylcellulose hydrogels'. Together they form a unique fingerprint.

Cite this