Likelihood analysis of the sub-GUT MSSM in light of LHC 13-TeV data

J. C. Costa, E. Bagnaschi, K. Sakurai, M. Borsato, O. Buchmueller, M. Citron, A. De Roeck, M. J. Dolan, J. R. Ellis, H. Flächer, S. Heinemeyer, M. Lucio, D. Martínez Santos, K. A. Olive, A. Richards, G. Weiglein

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

We describe a likelihood analysis using MasterCode of variants of the MSSM in which the soft supersymmetry-breaking parameters are assumed to have universal values at some scale Min below the supersymmetric grand unification scale MGUT, as can occur in mirage mediation and other models. In addition to Min, such ‘sub-GUT’ models have the 4 parameters of the CMSSM, namely a common gaugino mass m1 / 2, a common soft supersymmetry-breaking scalar mass m0, a common trilinear mixing parameter A and the ratio of MSSM Higgs vevs tan β, assuming that the Higgs mixing parameter μ> 0. We take into account constraints on strongly- and electroweakly-interacting sparticles from ∼ 36 /fb of LHC data at 13 TeV and the LUX and 2017 PICO, XENON1T and PandaX-II searches for dark matter scattering, in addition to the previous LHC and dark matter constraints as well as full sets of flavour and electroweak constraints. We find a preference for Min∼ 10 5 to 109GeV, with Min∼ MGUT disfavoured by Δ χ2∼ 3 due to the BR (Bs , d→ μ+μ-) constraint. The lower limits on strongly-interacting sparticles are largely determined by LHC searches, and similar to those in the CMSSM. We find a preference for the LSP to be a Bino or Higgsino with mχ~10∼1TeV, with annihilation via heavy Higgs bosons H / A and stop coannihilation, or chargino coannihilation, bringing the cold dark matter density into the cosmological range. We find that spin-independent dark matter scattering is likely to be within reach of the planned LUX-Zeplin and XENONnT experiments. We probe the impact of the (g- 2) μ constraint, finding similar results whether or not it is included.

Original languageEnglish (US)
Article number158
JournalEuropean Physical Journal C
Volume78
Issue number2
DOIs
StatePublished - Feb 1 2018

Bibliographical note

Funding Information:
The work of E. B. and G. W. is supported in part by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings and the early Universe”. The work of M. B. and D. M. S. is supported by the European Research Council via Grant BSMFLEET 639068. The work of J. C. C. is supported by CNPq (Brazil). The work of M. J. D. is supported in part by the Australia Research Council. The work of J. E. is supported in part by STFC (UK) via the research Grant ST/L000326/1 and in part via the Estonian Research Council via a Mobilitas Pluss grant, and the work of H. F. is also supported in part by STFC (UK). The work of S. H. is supported in part by the MEINCOP Spain under contract FPA2016-78022-P, in part by the Spanish Agencia Estatal de Investigación (AEI) and the EU Fondo Europeo de Desarrollo Regional (FEDER) through the project FPA2016-78645-P, in part by the AEI through the Grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597, and by the Spanish MICINN Consolider-Ingenio 2010 Program under Grant MultiDark CSD2009-00064. The work of M. L. and I. S. F. is supported by XuntaGal. The work of K.A.O. is supported in part by DOE Grant de-sc0011842 at the University of Minnesota. K. S. thanks the TU Munich for hospitality during the final stages of this work and has been partially supported by the DFG cluster of excellence EXC 153 “Origin and Structure of the Universe, by the Collaborative Research Center SFB1258. The work of K. S. is also partially supported by the National Science Centre, Poland, under research Grants DEC-2014/15/B/ST2/02157, DEC-2015/18/M/ST2/00054 and DEC-2015/19/D/ST2/03136. The work of G. W. is also supported in part by the European Commission through the “HiggsTools” Initial Training Network PITN-GA-2012-316704.

Funding Information:
Acknowledgements The work of E. B. and G. W. is supported in part by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings and the early Universe”. The work of M. B. and D. M. S. is supported by the European Research Council via Grant BSMFLEET 639068. The work of J. C. C. is supported by CNPq (Brazil). The work of M. J. D. is supported in part by the Australia Research Council. The work of J. E. is supported in part by STFC (UK) via the research Grant ST/L000326/1 and in part via the Estonian Research Council via a Mobilitas Pluss grant, and the work of H. F. is also supported in part by STFC (UK). The work of S. H. is supported in part by the MEINCOP Spain under contract FPA2016-78022-P, in part by the Spanish Agencia Estatal de Investigación (AEI) and the EU Fondo Europeo de Desar-rollo Regional (FEDER) through the project FPA2016-78645-P, in part by the AEI through the Grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597, and by the Spanish MICINN Consolider-Ingenio 2010 Program under Grant MultiDark CSD2009-00064. The work of M. L. and I. S. F. is supported by XuntaGal. The work of K.A.O. is supported in part by DOE Grant de-sc0011842 at the University of Minnesota. K. S. thanks the TU Munich for hospitality during the final stages of this work and has been partially supported by the DFG cluster of excellence EXC 153 “Origin and Structure of the Universe, by the Collaborative Research Center SFB1258. The work of K. S. is also partially supported by the National Science Centre, Poland, under research Grants DEC-2014/15/B/ST2/02157, DEC-2015/18/M/ST2/00054 and DEC-2015/19/D/ST2/03136. The work of G. W. is also supported in part by the European Commission through the “HiggsTools” Initial Training Network PITN-GA-2012-316704.

Publisher Copyright:
© 2018, The Author(s).

Fingerprint Dive into the research topics of 'Likelihood analysis of the sub-GUT MSSM in light of LHC 13-TeV data'. Together they form a unique fingerprint.

Cite this