Projects per year
Abstract
Semi-crystalline polylactide (PLA)/polyolefin multi-component blends were used as precursors for the generation of a new class of micro-cellular polymers. Either a polypropylene-based elastomer (PBE) or polypropylene (PP) homopolymer were utilized as dispersed phases at the 10 wt% level. An epoxy-functionalized terpolymer (PEGMMA) was introduced (1 wt%) as a reactive compatibilizer to reduce the dispersed phase droplet size and provide sufficient adhesion between the matrix and dispersed phase. In addition, a polyalkylene glycol liquid (PAG) was added to the blend (4 wt%) to serve as a PLA plasticizer and interfacial modifier. The multicomponent blends exhibited significant increases in strain at break as compared to neat PLA and were subjected to a range of uniaxial strains (10–90%) at room temperature. These cold drawn materials exhibited nearly constant cross-sectional area and fine micro-cellular structures, as revealed by scanning electron microscopy. Distinct different voiding mechanisms observed for the PBE- and PP-containing blends were ascribed to the differences in the dispersed phase elastic moduli and deformability. The material density of cold drawn blends was reduced by up to 34% when compared to the precursor blends without a noticeable change in cross-sectional area. The novel low-density microcellular PLA blends demonstrated outstanding mechanical properties such as high strength, high modulus, substantial ductility, and a 14-fold increase in impact resistance as compared to PLA homopolymer.
Original language | English (US) |
---|---|
Pages (from-to) | 73-83 |
Number of pages | 11 |
Journal | Polymer |
Volume | 102 |
DOIs | |
State | Published - Oct 12 2016 |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Ltd
Keywords
- Lightweight polymer
- Polylactide
- Polymer blend
MRSEC Support
- Shared
Fingerprint
Dive into the research topics of 'Lightweight micro-cellular plastics from polylactide/polyolefin hybrids'. Together they form a unique fingerprint.Projects
- 2 Finished
-
MRSEC IRG-3: Hierarchical Multifunctional Macromolecular Materials
Reineke, T. M. (Coordinator), Bates, F. S. (Senior Investigator), Dorfman, K. (Senior Investigator), Dutcher, C. S. (Senior Investigator), Hillmyer, M. A. (Senior Investigator), Lodge, T. P. (Senior Investigator), Morse, D. C. (Senior Investigator), Siepmann, I. (Senior Investigator), Barreda, L. (Researcher) & Ganewatta, M. S. (Researcher)
11/1/14 → 10/31/20
Project: Research project
-