Life history as a constraint on plasticity

Developmental timing is correlated with phenotypic variation in birds

E. C. Snell-Rood, E. M. Swanson, R. L. Young

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Understanding why organisms vary in developmental plasticity has implications for predicting population responses to changing environments and the maintenance of intraspecific variation. The epiphenotype hypothesis posits that the timing of development can constrain plasticity - the earlier alternate phenotypes begin to develop, the greater the difference that can result amongst the final traits. This research extends this idea by considering how life history timing shapes the opportunity for the environment to influence trait development. We test the prediction that the earlier an individual begins to actively interact with and explore their environment, the greater the opportunity for plasticity and thus variation in foraging traits. This research focuses on life history variation across four groups of birds using museum specimens and measurements from the literature. We reasoned that greater phenotypic plasticity, through either environmental effects or genotype-by-environment interactions in development, would be manifest in larger trait ranges (bills and tarsi) within species. Among shorebirds and ducks, we found that species with relatively shorter incubation times tended to show greater phenotypic variation. Across warblers and sparrows, we found little support linking timing of flight and trait variation. Overall, our results also suggest a pattern between body size and trait variation, consistent with constraints on egg size that might result in larger species having more environmental influences on development. Taken together, our results provide some support for the hypothesis that variation in life histories affects how the environment shapes development, through either the expression of plasticity or the release of cryptic genetic variation.

Original languageEnglish (US)
Pages (from-to)379-388
Number of pages10
JournalHeredity
Volume115
Issue number4
DOIs
StatePublished - Oct 19 2015

Fingerprint

Birds
Sparrows
Museums
Songbirds
Ducks
Body Size
Research
Ankle
Ovum
Genotype
Maintenance
Phenotype
Population
Life History Traits

Cite this

Life history as a constraint on plasticity : Developmental timing is correlated with phenotypic variation in birds. / Snell-Rood, E. C.; Swanson, E. M.; Young, R. L.

In: Heredity, Vol. 115, No. 4, 19.10.2015, p. 379-388.

Research output: Contribution to journalArticle

@article{cd5d8ae2036543ebbbb601f43eca2dc7,
title = "Life history as a constraint on plasticity: Developmental timing is correlated with phenotypic variation in birds",
abstract = "Understanding why organisms vary in developmental plasticity has implications for predicting population responses to changing environments and the maintenance of intraspecific variation. The epiphenotype hypothesis posits that the timing of development can constrain plasticity - the earlier alternate phenotypes begin to develop, the greater the difference that can result amongst the final traits. This research extends this idea by considering how life history timing shapes the opportunity for the environment to influence trait development. We test the prediction that the earlier an individual begins to actively interact with and explore their environment, the greater the opportunity for plasticity and thus variation in foraging traits. This research focuses on life history variation across four groups of birds using museum specimens and measurements from the literature. We reasoned that greater phenotypic plasticity, through either environmental effects or genotype-by-environment interactions in development, would be manifest in larger trait ranges (bills and tarsi) within species. Among shorebirds and ducks, we found that species with relatively shorter incubation times tended to show greater phenotypic variation. Across warblers and sparrows, we found little support linking timing of flight and trait variation. Overall, our results also suggest a pattern between body size and trait variation, consistent with constraints on egg size that might result in larger species having more environmental influences on development. Taken together, our results provide some support for the hypothesis that variation in life histories affects how the environment shapes development, through either the expression of plasticity or the release of cryptic genetic variation.",
author = "Snell-Rood, {E. C.} and Swanson, {E. M.} and Young, {R. L.}",
year = "2015",
month = "10",
day = "19",
doi = "10.1038/hdy.2015.47",
language = "English (US)",
volume = "115",
pages = "379--388",
journal = "Heredity",
issn = "0018-067X",
publisher = "Nature Publishing Group",
number = "4",

}

TY - JOUR

T1 - Life history as a constraint on plasticity

T2 - Developmental timing is correlated with phenotypic variation in birds

AU - Snell-Rood, E. C.

AU - Swanson, E. M.

AU - Young, R. L.

PY - 2015/10/19

Y1 - 2015/10/19

N2 - Understanding why organisms vary in developmental plasticity has implications for predicting population responses to changing environments and the maintenance of intraspecific variation. The epiphenotype hypothesis posits that the timing of development can constrain plasticity - the earlier alternate phenotypes begin to develop, the greater the difference that can result amongst the final traits. This research extends this idea by considering how life history timing shapes the opportunity for the environment to influence trait development. We test the prediction that the earlier an individual begins to actively interact with and explore their environment, the greater the opportunity for plasticity and thus variation in foraging traits. This research focuses on life history variation across four groups of birds using museum specimens and measurements from the literature. We reasoned that greater phenotypic plasticity, through either environmental effects or genotype-by-environment interactions in development, would be manifest in larger trait ranges (bills and tarsi) within species. Among shorebirds and ducks, we found that species with relatively shorter incubation times tended to show greater phenotypic variation. Across warblers and sparrows, we found little support linking timing of flight and trait variation. Overall, our results also suggest a pattern between body size and trait variation, consistent with constraints on egg size that might result in larger species having more environmental influences on development. Taken together, our results provide some support for the hypothesis that variation in life histories affects how the environment shapes development, through either the expression of plasticity or the release of cryptic genetic variation.

AB - Understanding why organisms vary in developmental plasticity has implications for predicting population responses to changing environments and the maintenance of intraspecific variation. The epiphenotype hypothesis posits that the timing of development can constrain plasticity - the earlier alternate phenotypes begin to develop, the greater the difference that can result amongst the final traits. This research extends this idea by considering how life history timing shapes the opportunity for the environment to influence trait development. We test the prediction that the earlier an individual begins to actively interact with and explore their environment, the greater the opportunity for plasticity and thus variation in foraging traits. This research focuses on life history variation across four groups of birds using museum specimens and measurements from the literature. We reasoned that greater phenotypic plasticity, through either environmental effects or genotype-by-environment interactions in development, would be manifest in larger trait ranges (bills and tarsi) within species. Among shorebirds and ducks, we found that species with relatively shorter incubation times tended to show greater phenotypic variation. Across warblers and sparrows, we found little support linking timing of flight and trait variation. Overall, our results also suggest a pattern between body size and trait variation, consistent with constraints on egg size that might result in larger species having more environmental influences on development. Taken together, our results provide some support for the hypothesis that variation in life histories affects how the environment shapes development, through either the expression of plasticity or the release of cryptic genetic variation.

UR - http://www.scopus.com/inward/record.url?scp=84942196510&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84942196510&partnerID=8YFLogxK

U2 - 10.1038/hdy.2015.47

DO - 10.1038/hdy.2015.47

M3 - Article

VL - 115

SP - 379

EP - 388

JO - Heredity

JF - Heredity

SN - 0018-067X

IS - 4

ER -