## Abstract

A detailed classification is made of all orthogonal coordinate systems for which the Klein-Cordon equation in space-time, ψ_{tt} - Δ_{3}ψ = Λψ, admits a separation of variables. We show that the Klein-Gordon equation is separable in 261 orthogonal coordinate systems. In each case the coordinate systems presented are characterized in terms of three symmetric second order commuting operators in the enveloping algebra of the Poincaré group. This paper also consitutes an important step in the study of separation of variables for the wave equation in space-time ψ_{tt} - Δ_{3}ψ = 0, and its relation to the underlying conformal symmetry group O(4,2) of this equation.

Original language | English (US) |
---|---|

Pages (from-to) | 1233-1246 |

Number of pages | 14 |

Journal | Journal of Mathematical Physics |

Volume | 19 |

Issue number | 6 |

DOIs | |

State | Published - 1977 |

Externally published | Yes |