Lewis acid zeolites for tandem Diels-Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene

Chun Chih Chang, Hong Je Cho, Jingye Yu, Ray J. Gorte, Jason Gulbinski, Paul Dauenhauer, Wei Fan

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

Lewis acid zeolites including Zr-, Sn-, and Ti-BEA were examined for tandem [4 + 2] Diels-Alder cycloaddition of 2,5-dimethylfuran (DMF) and ethylene to oxanorbornene with subsequent dehydration to produce biorenewable p-xylene. Zr-BEA (Si/Zr = 168) exhibited superior performance with improved recalcitrance to deactivation, which was attributed to its low activity for the hydrolysis of DMF to 2,5-hexanedione and subsequent condensation. Zr-BEA also achieved the highest selectivity to p-xylene of 90% at 99% conversion of DMF. For low catalyst loading within a three-phase reactor, the reaction rate to form p-xylene was linearly proportional to the number of Lewis acid sites, while high catalyst loading exhibited zero order dependence on Lewis acid sites. A maximum achievable reaction rate was shown to be consistent with a transition in rate-limiting reactions from dehydration of oxanorbornene, the Diels-Alder product, to the Diels-Alder cycloaddition of DMF and ethylene.

Original languageEnglish (US)
Pages (from-to)1368-1376
Number of pages9
JournalGreen Chemistry
Volume18
Issue number5
DOIs
StatePublished - 2016

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry 2016.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Fingerprint Dive into the research topics of 'Lewis acid zeolites for tandem Diels-Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene'. Together they form a unique fingerprint.

Cite this