Lessons on applying automated recommender systems to information-seeking tasks

Joseph A. Konstan, Sean M. McNee, Cai Nicolas Ziegler, Roberto Torres, Nishikant Kapoor, John T. Riedl

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

Automated recommender systems predict user preferences by applying machine learning techniques to data on products, users, and past user preferences for products. Such systems have become increasingly popular in entertainment and e-commerce domains, but have thus far had little success in information-seeking domains such as identifying published research of interest. We report on several recent publications that show how recommenders can be extended to more effectively address information-seeking tasks by expanding the focus from accurate prediction of user preferences to identifying a useful set of items to recommend in response to the user's specific information need. Specific research demonstrates the value of diversity in recommendation lists, shows how users value lists of recommendations as something different from the sum of the individual recommendations within, and presents an analytic model for customizing a recommender to match user information-seeking needs.

Original languageEnglish (US)
Title of host publicationProceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
Pages1630-1633
Number of pages4
StatePublished - Nov 13 2006
Event21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06 - Boston, MA, United States
Duration: Jul 16 2006Jul 20 2006

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume2

Other

Other21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
Country/TerritoryUnited States
CityBoston, MA
Period7/16/067/20/06

Fingerprint

Dive into the research topics of 'Lessons on applying automated recommender systems to information-seeking tasks'. Together they form a unique fingerprint.

Cite this