Leakage power analysis and reduction for nano-scale circuits

Amit Agarwal, Saibal Mukhopadhyay, Chris H. Kim, Arijit Raychowdhury, Kaushik Roy

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Scopus citations

Abstract

Semiconductor devices are aggressively scaled each technology generation to achieve high integration density while the supply voltage is scaled to achieve lower switch ing energy per device. However, to achieve high performance there is need for commensurate scaling of the transistor threshold voltage (Vth). Scaling of transis tor threshold voltage is associated with exponential increase in subthreshold leakage current. Aggressive scaling of the devices in the nano-metre regime not only increases the subthreshold leakage but also has other negative impacts such as increased DIBL, VGh roll-off, reduced on-current to off-current ratio and increased source-drain resis tance. To avoid these short-channel effects, oxide thickness scaling and higher and non-uniform doping needs to be incorporated as the devices are scaled in nano metre regime, which results in exponential increase in gate and junction band-to-bandtunnelling leakage. This increase in total leakage causes the leakage current to become a major component of total power consumption. Hence, leakage reduction techniques are becoming indispensable in future designs. This chapter explained the various leak age mechanisms and discussed different circuit level techniques to reduce leakage energy and design tradeoffs.

Original languageEnglish (US)
Title of host publicationSystem-on-Chip
Subtitle of host publicationNext Generation Electronics
PublisherInstitution of Engineering and Technology
Pages415-448
Number of pages34
ISBN (Electronic)9781849190206
ISBN (Print)0863415520, 9780863415524
DOIs
StatePublished - Jan 1 2006

Fingerprint

Dive into the research topics of 'Leakage power analysis and reduction for nano-scale circuits'. Together they form a unique fingerprint.

Cite this