Layer Dependence of Dielectric Response and Water-Enhanced Ambient Degradation of Highly Anisotropic Black As

Hwanhui Yun, Supriya Ghosh, Prafful Golani, Steven J. Koester, K. Andre Mkhoyan

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Black arsenic (BAs) is a van der Waals layered material with a puckered honeycomb structure and has received increased interest due to its anisotropic properties and promising performance in devices. Here, crystalline structure, thickness-dependent dielectric responses, and ambient stability of BAs nanosheets are investigated using scanning transmission electron microscopy (STEM) imaging and spectroscopy. Atomic-resolution high-angle annular dark-field (HAADF)-STEM images directly visualize the three-dimensional structure and evaluate the degree of anisotropy. STEM-electron energy loss spectroscopy is used to measure the dielectric response of BAs as a function of the number of layers. Finally, BAs degradation under different ambient environments is studied, highlighting high sensitivity to moisture in the air.

Original languageEnglish (US)
Pages (from-to)5988-5997
Number of pages10
JournalACS nano
Volume14
Issue number5
DOIs
StatePublished - May 26 2020

Bibliographical note

Funding Information:
This project was partially supported by UMN MRSEC program DMR-1420013 and SMART, one of seven centers of nCORE, a Semiconductor Research Corporation program, sponsored by NIST. Parts of this work was carried out in the College of Science and Engineering Characterization Facility, University of Minnesota (UMN), supported in part by the NSF through the UMN MRSEC program (No. DMR-1420013). P.G. and S.J.K. were supported by the NSF under Award No. ECCS-1708769. The authors also thank Sagar Udyavara and Prof. Matthew Neurock for insightful discussions.

Publisher Copyright:
Copyright © 2020 American Chemical Society.

Keywords

  • 2D materials
  • EELS
  • HAADF-STEM
  • black arsenic
  • degradation
  • surface plasmon
  • thickness-dependent EELS

MRSEC Support

  • Partial

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Layer Dependence of Dielectric Response and Water-Enhanced Ambient Degradation of Highly Anisotropic Black As'. Together they form a unique fingerprint.

Cite this