Lawsonite-rich layers as records of fluid and element mobility in subducted crust (Sivrihisar Massif, Turkey)

Katherine F. Fornash, Donna L. Whitney

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Lawsonite is an abundant hydrous mineral in subducted oceanic crust and sediments and is an important carrier of water (∼11.5 wt%) and trace elements (REE, U, Th, Sr, Pb) into the mantle. Despite its widespread stability at the high-pressure/low-temperature conditions of subduction, it is rarely preserved in the geologic record, particularly in eclogite. Therefore, scarce fresh lawsonite eclogites in which the composition of lawsonite can be directly determined are important geochemical archives of fluid-mediated processes during subduction. Of particular interest are lawsonite-rich veins and layers that may represent former fluid pathways or metasomatic zones and that therefore may record element mobility related to fluid-rock interaction during subduction and/or incipient exhumation. In the Sivrihisar (Turkey) subduction complex, lawsonite-rich veins and layers comprised of ∼30–50 % lawsonite occur at pod margins where lawsonite eclogite has been partially transformed to lawsonite blueschist. To understand the petrogenesis of these lawsonite-rich assemblages, we conducted a petrographic and geochemical study of a representative lawsonite-rich layer at the margin of a meter-scale lawsonite eclogite pod. Bulk rock and mineral major and trace element analyses were conducted along a transect consisting of the lawsonite-rich layer (Lws + Grt + Ph), its glaucophane-rich margin (Gln + Grt + Lws + Ph + Rt), and the lawsonite eclogite host at varying distances from the layer (∼1–2 cm away and >10 cm away). The bulk-rock composition of the lawsonite eclogite indicates a basaltic protolith that experienced interactions with (meta-)sedimentary rocks before or during the crystallization of high-pressure phases such as garnet and rutile. Integrated major and trace element composition and zoning in high-pressure phases indicate that the lawsonite-rich layer and its associated glaucophane-rich margin likely formed at or near peak eclogite-facies conditions (2.2–2.4 GPa, 520 °C) as a result of fluid-mediated processes that scavenged Al2O3, MnO, Y, Th, HFSE, and REE from the eclogite immediately adjacent to the vein (∼1–2 cm away). Mass balance calculations also suggest the addition of LILE and transition metals (Ni, Cr, Zn) to the lithologic layers at the pod margin; these elements were likely supplied from an external source, such as serpentinites and/or sediments, both of which occur interspersed with mafic rocks in the Sivrihisar complex. Fluid-rock interaction may have also driven changes in fO2, as omphacite, glaucophane, lawsonite, and phengite from the pod margin record core-to-rim increases in Fe3+. These changes in bulk composition preferentially stabilized glaucophane-rich (blueschist) and LREE- and LILE-enriched lawsonite-rich assemblages at the pod margin.

Original languageEnglish (US)
Article number119356
JournalChemical Geology
StatePublished - Feb 5 2020

Bibliographical note

Funding Information:
K.F. Fornash acknowledges support from a National Science Foundation Graduate Research Fellowship (NSF GRFP) and Graduate Research Opportunities Worldwide grant, and from the University of Minnesota for a Doctoral Dissertation Fellowship and Thesis Research Grant. DLW acknowledges funding from the College of Science & Engineering at the University of Minnesota. The authors thank T. Tsujimori and an anonymous reviewer for their thorough and helpful reviews, and C. Chauvel for editorial handling. Appendix A

Publisher Copyright:
© 2019 Elsevier B.V.


  • Eclogite
  • Fluids
  • Lawsonite
  • Rutile
  • Subduction
  • Turkey


Dive into the research topics of 'Lawsonite-rich layers as records of fluid and element mobility in subducted crust (Sivrihisar Massif, Turkey)'. Together they form a unique fingerprint.

Cite this