Abstract
The simulation of low-speed combustion flows is well established. However, at highspeed conditions where radical formation and ignition delay are important, there is much less experience with turbulent combustion modeling. In the present work, a novel evolution variable manifold (EVM) approach of Cymbalist and Dimotakis1,2 is implemented in a production CFD code and preliminary RANS and large-eddy simulations are computed for a hydrogen combustion test case. The EVM approach solves a scalar conservation equation for the induction time to represent ignition delay. The state of the combustion products is tabulated as a function of density, energy, mixture fraction, and the evolution variable. A thermodynamically-consistent numerical flux function is developed and the approach for coupling the EVM table to CFD is discussed. Initial simulations show that the EVM approach produces good agreement with full chemical kinetics model simulations. Work remains to be done to improve the numerical stability, extend the grid, and increase the order of accuracy of the simulations.
Original language | English (US) |
---|---|
Title of host publication | 45th AIAA Fluid Dynamics Conference |
Publisher | American Institute of Aeronautics and Astronautics Inc, AIAA |
ISBN (Print) | 9781624103629 |
DOIs | |
State | Published - 2015 |
Event | 45th AIAA Fluid Dynamics Conference, 2015 - Dallas, United States Duration: Jun 22 2015 → Jun 26 2015 |
Publication series
Name | 45th AIAA Fluid Dynamics Conference |
---|
Other
Other | 45th AIAA Fluid Dynamics Conference, 2015 |
---|---|
Country/Territory | United States |
City | Dallas |
Period | 6/22/15 → 6/26/15 |
Bibliographical note
Publisher Copyright:© 2015, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.