Label-Free Super-Resolution Imaging Techniques

Ryan E. Leighton, Ariel M. Alperstein, Renee R. Frontiera

Research output: Contribution to journalReview articlepeer-review

Abstract

Biological and material samples contain nanoscale heterogeneities that are unresolvable with conventional microscopy techniques. Super-resolution fluorescence methods can break the optical diffraction limit to observe these features, but they require samples to be fluorescently labeled. Over the past decade, progress has been made toward developing super-resolution techniques that do not require the use of labels. These label-free techniques span a variety of different approaches, including structured illumination, transient absorption, infrared absorption, and coherent Raman spectroscopies. Many draw inspiration from widely successful fluorescence-based techniques such as stimulated emission depletion (STED) microscopy, photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). In this review, we discuss the progress made in these fields along with the current challenges and prospects in reaching resolutions comparable to those achieved with fluorescence-based methods.

Original languageEnglish (US)
Pages (from-to)37-55
Number of pages19
JournalAnnual Review of Analytical Chemistry
Volume15
Issue number1
DOIs
StatePublished - 2022

Bibliographical note

Funding Information:
R.R.F. acknowledges the support of the US National Science Foundation (grant CHE-1552849). R.E.L., A.M.A., and R.R.F. acknowledge the support of the National Institute of General Medical Sciences (grant 5R35-GM119441). R.E.L. acknowledges the support of the National Science Foundation Graduate Research Fellowship (grant CON-75851, project 00074041).

Publisher Copyright:
© 2022 by Annual Reviews. All rights reserved.

Keywords

  • Chemical imaging
  • Coherent Raman imaging
  • Label-free
  • Photothermal infrared
  • Subdiffraction
  • Super-resolution Raman microscopy
  • Microscopy, Fluorescence/methods

PubMed: MeSH publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Journal Article
  • Research Support, N.I.H., Extramural

Fingerprint

Dive into the research topics of 'Label-Free Super-Resolution Imaging Techniques'. Together they form a unique fingerprint.

Cite this