Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics for Temporal Modeling

Kshitij Tayal, Arvind Renganathan, Rahul Ghosh, Xiaowei Jia, Vipin Kumar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Accurate long-term predictions are the foundations for many machine learning applications and decision-making processes. However, building accurate long-term prediction models remains challenging due to the limitations of existing temporal models like recurrent neural networks (RNNs), as they capture only the statistical connections in the training data and may fail to learn the underlying dynamics of the target system. To tackle this challenge, we propose a novel machine learning model based on Koopman operator theory, which we call Koopman Invertible Autoencoders (KIA), that captures the inherent characteristic of the system by modeling both forward and backward dynamics in the infinite-dimensional Hilbert space. This enables us to efficiently learn low-dimensional representations, resulting in more accurate predictions of long-term system behavior. Moreover, our method's invertibility design enforces reversibility and consistency in both forward and inverse operations. We illustrate the utility of KIA on pendulum and climate datasets, demonstrating 300% improvements in long-term prediction capability for pendulum while maintaining robustness against noise. Additionally, our method demonstrates the ability to better comprehend the intricate dynamics of the climate system when compared to existing Koopman-based methods.

Original languageEnglish (US)
Title of host publicationProceedings - 23rd IEEE International Conference on Data Mining, ICDM 2023
EditorsGuihai Chen, Latifur Khan, Xiaofeng Gao, Meikang Qiu, Witold Pedrycz, Xindong Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages588-597
Number of pages10
ISBN (Electronic)9798350307887
DOIs
StatePublished - 2023
Event23rd IEEE International Conference on Data Mining, ICDM 2023 - Shanghai, China
Duration: Dec 1 2023Dec 4 2023

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
ISSN (Print)1550-4786

Conference

Conference23rd IEEE International Conference on Data Mining, ICDM 2023
Country/TerritoryChina
CityShanghai
Period12/1/2312/4/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Fingerprint

Dive into the research topics of 'Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics for Temporal Modeling'. Together they form a unique fingerprint.

Cite this