Knowledge Graph Applications in Medical Imaging Analysis: A Scoping Review

Song Wang, Mingquan Lin, Tirthankar Ghosal, Ying Ding, Yifan Peng

Research output: Contribution to journalReview articlepeer-review

6 Scopus citations

Abstract

Background. There is an increasing trend to represent domain knowledge in structured graphs, which provide efficient knowledge representations for many downstream tasks. Knowledge graphs are widely used to model prior knowledge in the form of nodes and edges to represent semantically connected knowledge entities, which several works have adopted into different medical imaging applications. Methods. We systematically searched over five databases to find relevant articles that applied knowledge graphs to medical imaging analysis. After screening, evaluating, and reviewing the selected articles, we performed a systematic analysis. Results. We looked at four applications in medical imaging analysis, including disease classification, disease localization and segmentation, report generation, and image retrieval. We also identified limitations of current work, such as the limited amount of available annotated data and weak generalizability to other tasks. We further identified the potential future directions according to the identified limitations, including employing semisupervised frameworks to alleviate the need for annotated data and exploring task-agnostic models to provide better generalizability. Conclusions. We hope that our article will provide the readers with aggregated documentation of the state-of-the-art knowledge graph applications for medical imaging to encourage future research.

Original languageEnglish (US)
Article number9841548
JournalHealth Data Science
Volume2022
DOIs
StatePublished - 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
Copyright © 2022 Song Wang et al. Exclusive Licensee Peking University Health Science Center. Distributed under a Creative Commons Attribution License (CC BY 4.0).

Fingerprint

Dive into the research topics of 'Knowledge Graph Applications in Medical Imaging Analysis: A Scoping Review'. Together they form a unique fingerprint.

Cite this