Knickpoints and hillslope failures: Interactions in a steady-state experimental landscape

Alessandro Bigi, Leslie E. Hasbargen, Alberto Montanari, Chris Paola

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Hillslope stability depends strongly on local conditions, such as lithology and rock strength, degree of saturation, and critical slope angle. Common triggers for slope failure include severe storms, earthquakes, and removal of material from the toe of the hillslope. In this paper, we focus on the latter, in a model in which streams incise the toe and destabilize the hillslope. We investigate possible interactions between migrating knickpoints and hillslope failures in a small-scale, steadily eroding experimental landscape that experiences steady rainfall and base-level fall conditions. We monitored knickpoint propagation and hillslope failure activity with time lapse photography over a time period in which numerous knickpoints migrated through the drainage basin. We then investigated temporal and spatial relationships between hillslope failures and knickpoints and compared these results to Monte Carlo simulations of hillslope failure distributions. When focusing along a single channel, we found that, statistically (significant at the 98% confidence level), a greater number of failures occur downstream from a migrating knickpoint. These results highlight both the organized and random nature of hillslope and knickpoint interactions.

Original languageEnglish (US)
Pages (from-to)295-307
Number of pages13
JournalSpecial Paper of the Geological Society of America
StatePublished - Jan 1 2006


  • Evolution
  • Hillslope failure
  • Knickpoints
  • Landslide triggering


Dive into the research topics of 'Knickpoints and hillslope failures: Interactions in a steady-state experimental landscape'. Together they form a unique fingerprint.

Cite this