Kinetic Regime Change in the Tandem Dehydrative Aromatization of Furan Diels-Alder Products

Ryan E. Patet, Nima Nikbin, C. Luke Williams, Sara K. Green, Chun Chih Chang, Wei Fan, Stavros Caratzoulas, Paul J. Dauenhauer, Dionisios G. Vlachos

Research output: Contribution to journalArticlepeer-review

64 Scopus citations


Renewable production of p-xylene from [4 + 2] Diels-Alder cycloaddition of 2,5-dimethylfuran (DMF) and ethylene with H-Y zeolite catalyst in n-heptane solvent is investigated. Experimental studies varying the solid acid catalyst concentration reveal two kinetic regimes for the p-xylene production rate: (i) a linear regime at low acid site concentrations with activation energy Ea = 10.8 kcal/mol and (ii) a catalyst-independent kinetic regime at high acid site concentrations with activation energy Ea = 20.1 kcal/mol. We carry out hybrid QM/MM calculations with a three-layer embedded cluster ONIOM model to compute the energetics along the main reaction pathway, and a microkinetic model is constructed for the interpretation of the experimental kinetic data. At high solid acid concentrations, p-xylene production is limited by the homogeneous Diels-Alder reaction, whereas at low acid concentrations, the overall rate is limited by the heterogeneously catalyzed dehydration of the Diels-Alder cycloadduct of DMF and ethylene because of an insufficient number of acid sites, despite the dehydration reaction requiring significantly less activation energy. A reduced kinetic model reveals that the production of p-xylene follows the general kinetics of tandem reactions in which the first step is uncatalyzed and the second step is heterogeneously catalyzed. Reaction orders and apparent activation energies of quantum mechanical and microkinetic simulations are in agreement with experimental values. (Chemical Presented).

Original languageEnglish (US)
Pages (from-to)2367-2375
Number of pages9
JournalACS Catalysis
Issue number4
StatePublished - Apr 3 2015

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.


  • 2,5-Dimethylfuran (DMF)
  • Dehydration
  • Diels-Alder
  • Ethylene
  • Faujasite
  • Microkinetic model
  • p-xylene


Dive into the research topics of 'Kinetic Regime Change in the Tandem Dehydrative Aromatization of Furan Diels-Alder Products'. Together they form a unique fingerprint.

Cite this