Kernel Spectral Curvature Clustering (KSCC)

Guangliang Chen, Stefan Atev, Gilad Lerman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

31 Scopus citations

Abstract

Multi-manifold modeling is increasingly used in segmentation and data representation tasks in computer vision and related fields. While the general problem, modeling data by mixtures of manifolds, is very challenging, several approaches exist for modeling data by mixtures of affine subspaces (which is often referred to as hybrid linear modeling). We translate some important instances of multi-manifold modeling to hybrid linear modeling in embedded spaces, without explicitly performing the embedding but applying the kernel trick. The resulting algorithm, Kernel Spectral Curvature Clustering, uses kernels at two levels - both as an implicit embedding method to linearize nonflat manifolds and as a principled method to convert a multiway affinity problem into a spectral clustering one. We demonstrate the effectiveness of the method by comparing it with other state-of-the-art methods on both synthetic data and a real-world problem of segmenting multiple motions from two perspective camera views.

Original languageEnglish (US)
Title of host publication2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009
Pages765-772
Number of pages8
DOIs
StatePublished - 2009
Event2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009 - Kyoto, Japan
Duration: Sep 27 2009Oct 4 2009

Publication series

Name2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009

Other

Other2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009
Country/TerritoryJapan
CityKyoto
Period9/27/0910/4/09

Fingerprint

Dive into the research topics of 'Kernel Spectral Curvature Clustering (KSCC)'. Together they form a unique fingerprint.

Cite this