Abstract
Graph representation learning has demonstrated improved performance in tasks such as link prediction and node classification across a range of domains. Research has shown that many natural graphs can be organized in hierarchical communities, leading to approaches that use these communities to improve the quality of node representations. However, these approaches do not take advantage of the learned representations to also improve the quality of the discovered communities and establish an iterative and joint optimization of representation learning and community discovery. In this work, we present Mazi, an algorithm that jointly learns the hierarchical community structure and the node representations of the graph in an unsupervised fashion. To account for the structure in the node representations, Mazi generates node representations at each level of the hierarchy, and utilizes them to influence the node representations of the original graph. Further, the communities at each level are discovered by simultaneously maximizing the modularity metric and minimizing the distance between the representations of a node and its community. Using multi-label node classification and link prediction tasks, we evaluate our method on a variety of synthetic and real-world graphs and demonstrate that Mazi outperforms other hierarchical and non-hierarchical methods.
Original language | English (US) |
---|---|
Title of host publication | Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Proceedings |
Editors | Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 86-103 |
Number of pages | 18 |
ISBN (Print) | 9783031263897 |
DOIs | |
State | Published - 2023 |
Event | 22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022 - Grenoble, France Duration: Sep 19 2022 → Sep 23 2022 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13714 LNAI |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022 |
---|---|
Country/Territory | France |
City | Grenoble |
Period | 9/19/22 → 9/23/22 |
Bibliographical note
Publisher Copyright:© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords
- Community detection
- Graph representation learning
- Hierarchical clustering
- Network embedding
- Networks
- Unsupervised learning