Joint behavior of point process of exceedances and partial sum from a Gaussian sequence

Aiping Hu, Zuoxiang Peng, Yongcheng Qi

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Consider a triangular array of mean zero Gaussian random variables. Under some weak conditions this paper proves that the partial sums and the point processes of exceedances formed by the array are asymptotically independent. For a standardized stationary Gaussian sequence, it is shown under some mild conditions that the point process of exceedances formed by the sequence (after centered at the sample mean) converges in distribution to a Poisson process and it is asymptotically independent of the partial sums. Finally, the joint limiting distributions of the extreme order statistics and the partial sums are obtained.

Original languageEnglish (US)
Pages (from-to)279-295
Number of pages17
JournalMetrika
Volume70
Issue number3
DOIs
StatePublished - Sep 1 2009

Keywords

  • Extreme order statistics
  • Joint distribution
  • Partial sum
  • Point process of exceedances
  • Stationary Gaussian sequence

Fingerprint Dive into the research topics of 'Joint behavior of point process of exceedances and partial sum from a Gaussian sequence'. Together they form a unique fingerprint.

Cite this