Iterative hard thresholding methods for l0 regularized convex cone programming

Research output: Contribution to journalArticlepeer-review

64 Scopus citations


In this paper we consider l0 regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving l0 regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the IHT method for finding an ϵ-local-optimal solution. We then propose a method for solving l0 regularized convex cone programming by applying the IHT method to its quadratic penalty relaxation and establish its iteration complexity for finding an ϵ-approximate local minimizer. Finally, we propose a variant of this method in which the associated penalty parameter is dynamically updated, and show that every accumulation point is a local izer of the problem.

Original languageEnglish (US)
Pages (from-to)125-154
Number of pages30
JournalMathematical Programming
Issue number1-2
StatePublished - Oct 2013
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2013, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.


  • Box constrained convex programming
  • Convex cone programming
  • Iterative hard thresholding method
  • Sparse approximation
  • l0 Regularization


Dive into the research topics of 'Iterative hard thresholding methods for l0 regularized convex cone programming'. Together they form a unique fingerprint.

Cite this