Islands containing slowly hydrolyzable GTP analogs promote microtubule rescues

Carolina Tropini, Elizabeth A. Roth, Marija Zanic, Melissa K. Gardner, Jonathon Howard

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


Microtubules are dynamic polymers of GTP- and GDP-tubulin that undergo stochastic transitions between growing and shrinking phases. Rescues, the conversion from shrinking to growing, have recently been proposed to be to the result of regrowth at GTP-tubulin islands within the lattice of growing microtubules. By introducing mixed GTP/GDP/GMPCPP (GXP) regions within the lattice of dynamic microtubules, we reconstituted GXP islands in vitro (GMPCPP is the slowly hydrolyzable GTP analog guanosine-5′-[(α,β)-methyleno]triphosphate). We found that such islands could reproducibly induce rescues and that the probability of rescue correlated with both the size of the island and the percentage of GMPCPP-tubulin within the island. The islands slowed the depolymerization rate of shortening microtubules and promoted regrowth more readily than GMPCPP seeds. Together, these findings provide new mechanistic insights supporting the possibility that rescues could be triggered by enriched GTP-tubulin regions and present a new tool for studying such rescue events in vitro.

Original languageEnglish (US)
Article numbere30103
JournalPloS one
Issue number1
StatePublished - Jan 17 2012


Dive into the research topics of 'Islands containing slowly hydrolyzable GTP analogs promote microtubule rescues'. Together they form a unique fingerprint.

Cite this