Investigating the adsorption behavior and quantitative contribution of Pb2+ adsorption mechanisms on biochars by different feedstocks from a fluidized bed pyrolysis system

Lingqin Liu, Yaji Huang, Yuanhua Meng, Jianhua Cao, Huajun Hu, Yinhai Su, Lu Dong, Shengnian Tao, Roger Ruan

Research output: Contribution to journalArticle


The aim of this study was to examine the qualitative and quantitative analysis of Pb2+ adsorption mechanisms performed with biochars derived from rice straw (RSBs), rice husk (RHBs) and saw dust (SDBs) at several pyrolysis temperatures (400-600 °C) in a fluidized bed system. Adsorption isotherms, kinetics, and desorption analysis were determined, and biochars were analyzed by X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope with Energy Dispersive Spectrometer (SEM-EDS) and Boehm titration method. The effect of minerals on Pb2+ adsorption, including precipitation and cation exchange, revealed increasing contribution of precipitation from a range of 4.13%–38.83% to a range of 34.08%–79.94% and decreasing effect of cation exchange from a range of 50.17%–69.75% to a range of 9.57%–43.47% with increasing pyrolysis temperature. However, it remained the dominant adsorption mechanism of all biochars (accounted for 69.49–89.52%). Especially, RSBs with quite high maximum adsorption capacity (qm) values (116-127.57 mg[rad]g−1) were mainly due to precipitation mechanism of Pb2+ adsorption, which exhibited better adsorption capacities than RHBs (25.15–30.40 mg[rad]g−1) and SDBs (21.81–24.05 mg[rad]g−1). Only with the fluidized bed shown in this study, 2.00t RSBs could be produced and the corresponding Pb2+ adsorption may reach 255.50kg per year depending on its maximum adsorption capacity under 500 °C pyrolysis temperature. The results suggest that RSBs produced in a fluidized bed reactor is a promising, cost-effective, engineered biochar for application of Pb2+ remediation in aqueous solutions.

Original languageEnglish (US)
Article number109609
JournalEnvironmental Research
StatePublished - Aug 2020


  • Adsorption mechanisms
  • Biochar
  • Fluidized bed pyrolysis
  • Lead
  • Quantitative contribution

PubMed: MeSH publication types

  • Journal Article

Fingerprint Dive into the research topics of 'Investigating the adsorption behavior and quantitative contribution of Pb<sup>2+</sup> adsorption mechanisms on biochars by different feedstocks from a fluidized bed pyrolysis system'. Together they form a unique fingerprint.

  • Cite this