Abstract
Scenarios in which multiple agents interact in a goal-directed manner can be modeled as differential games. Here each agent aims to optimize an associated cost function. Systems ranging from classical economic models to emerging applications in autonomous vehicles can fit into this framework. In scenarios such as analysis of human or animal behaviors, the cost-functions are not known. In order to design control strategies that interact with such agents, the objectives must be modeled or identified. This paper presents a methodology for identifying cost functions for interacting agents. In particular, we identify costs that lead to open-loop Nash equilibria for nonzero-sum constrained differential games. To solve this problem, we extend an inverse optimal control method, known as residual optimization, to the case of differential games. In this paper, we show that residual optimization is tractable for constrained differential games. Specifically, the residual optimization problems turn out to be fully decoupled. Numerical examples indicate that accurate costs can be learned from observing trajectories.
Original language | English (US) |
---|---|
Title of host publication | 2020 American Control Conference, ACC 2020 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2182-2187 |
Number of pages | 6 |
ISBN (Electronic) | 9781538682661 |
DOIs | |
State | Published - Jul 2020 |
Event | 2020 American Control Conference, ACC 2020 - Denver, United States Duration: Jul 1 2020 → Jul 3 2020 |
Publication series
Name | Proceedings of the American Control Conference |
---|---|
Volume | 2020-July |
ISSN (Print) | 0743-1619 |
Conference
Conference | 2020 American Control Conference, ACC 2020 |
---|---|
Country/Territory | United States |
City | Denver |
Period | 7/1/20 → 7/3/20 |
Bibliographical note
Publisher Copyright:© 2020 AACC.