TY - JOUR
T1 - Intrathecal delivery of a mutant μ-opioid receptor activated by naloxone as a possible antinociceptive paradigm
AU - Kao, J. H.
AU - Chen, S. L.
AU - Ma, H. I.
AU - Law, P. Y.
AU - Tao, Pao Luh
AU - Loh, H. H.
PY - 2010/9
Y1 - 2010/9
N2 - Direct injection of double-stranded adeno-associated virus type 2 (dsAAV2) with a μ-opioid receptor (MOR) mutant [S4.45(196)A], and a reporter protein (enhanced green fluorescent protein) into the spinal cord (S2/S3) dorsal horn region of ICR mice resulted in antinociceptive responses to systemic injection of opioid antagonist naloxone without altering the acute agonist morphine responses and no measurable tolerance or dependence development during subchronic naloxone treatment. To develop further such mutant MORs into a therapeutic agent in pain management, a less invasive method for virus delivery is needed. Thus, in current studies, the dsAAV2 was locally injected into the subarachnoid space of the spinal cord by intrathecal administration. Instead of using the MORS196A mutant, we constructed the dsAAV2 vector with the MORS196ACSTA mutant, a receptor mutant in which naloxone has been shown to exhibit full agonistic properties in vitro. After 2 weeks of virus injection, naloxone (10 mg/kg s.c.) elicited antinociceptive effect (determined by tail-flick test) without tolerance (10 mg/kg s.c., b.i.d. for 6 days) and significant withdrawal symptoms. On the other hand, subchronic treatment with morphine (10 mg/kg s.c., b.i.d.) for 6 days induced significant tolerance (4.8-fold) and withdrawal symptoms. Furthermore, we found that morphine, but not naloxone, induced the rewarding effects (determined by conditioned place preference test). These data suggest that local expression of MORS196ACSTA in spinal cord and systemic administration of naloxone has the potential to be developed into a new strategy in the management of pain without addiction liability.
AB - Direct injection of double-stranded adeno-associated virus type 2 (dsAAV2) with a μ-opioid receptor (MOR) mutant [S4.45(196)A], and a reporter protein (enhanced green fluorescent protein) into the spinal cord (S2/S3) dorsal horn region of ICR mice resulted in antinociceptive responses to systemic injection of opioid antagonist naloxone without altering the acute agonist morphine responses and no measurable tolerance or dependence development during subchronic naloxone treatment. To develop further such mutant MORs into a therapeutic agent in pain management, a less invasive method for virus delivery is needed. Thus, in current studies, the dsAAV2 was locally injected into the subarachnoid space of the spinal cord by intrathecal administration. Instead of using the MORS196A mutant, we constructed the dsAAV2 vector with the MORS196ACSTA mutant, a receptor mutant in which naloxone has been shown to exhibit full agonistic properties in vitro. After 2 weeks of virus injection, naloxone (10 mg/kg s.c.) elicited antinociceptive effect (determined by tail-flick test) without tolerance (10 mg/kg s.c., b.i.d. for 6 days) and significant withdrawal symptoms. On the other hand, subchronic treatment with morphine (10 mg/kg s.c., b.i.d.) for 6 days induced significant tolerance (4.8-fold) and withdrawal symptoms. Furthermore, we found that morphine, but not naloxone, induced the rewarding effects (determined by conditioned place preference test). These data suggest that local expression of MORS196ACSTA in spinal cord and systemic administration of naloxone has the potential to be developed into a new strategy in the management of pain without addiction liability.
UR - http://www.scopus.com/inward/record.url?scp=77956259385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956259385&partnerID=8YFLogxK
U2 - 10.1124/jpet.109.165399
DO - 10.1124/jpet.109.165399
M3 - Article
C2 - 20554907
AN - SCOPUS:77956259385
VL - 334
SP - 739
EP - 745
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
SN - 0022-3565
IS - 3
ER -