TY - JOUR

T1 - Internal length scale of weakest-link statistical model for quasi-brittle fracture

AU - Le, Jia Liang

AU - Xu, Zhifeng

AU - Eliáš, Jan

PY - 2018/4/1

Y1 - 2018/4/1

N2 - Anchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasibrittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.

AB - Anchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasibrittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.

UR - http://www.scopus.com/inward/record.url?scp=85042107729&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042107729&partnerID=8YFLogxK

U2 - 10.1061/(ASCE)EM.1943-7889.0001430

DO - 10.1061/(ASCE)EM.1943-7889.0001430

M3 - Article

AN - SCOPUS:85042107729

VL - 144

JO - Journal of Engineering Mechanics - ASCE

JF - Journal of Engineering Mechanics - ASCE

SN - 0733-9399

IS - 4

M1 - 04018017

ER -