Internal length scale of weakest-link statistical model for quasi-brittle fracture

Jia Liang Le, Zhifeng Xu, Jan Eliáš

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Anchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasibrittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.

Original languageEnglish (US)
Article number04018017
JournalJournal of Engineering Mechanics
Volume144
Issue number4
DOIs
StatePublished - Apr 1 2018

Fingerprint Dive into the research topics of 'Internal length scale of weakest-link statistical model for quasi-brittle fracture'. Together they form a unique fingerprint.

Cite this