Interleukin-10 gene therapy-mediated amelioration of bacterial pneumonia

Daniel F. Morrison, Dennis L. Foss, Michael P Murtaugh

Research output: Contribution to journalArticlepeer-review

49 Scopus citations


Respiratory infection by Actinobacillus pleuropneumoniae causes a highly pathogenic necrotizing pleuropneumonia with severe edema, hemorrhage and fever. Acute infection is characterized by expression of inflammatory cytokines, including interleukin-1 (IL-1), IL-6 and IL-8. To determine if high level production of inflammatory cytokines contributed to disease pathogenesis, we investigated if inhibiting macrophage activation with adenovirus type 5-expressed IL-10 (Ad-5/IL-10) reduced the severity of acute disease. Porcine tracheal epithelial cells infected with Ad-5/IL-10 produced bioactive human IL-10. When pigs were intratracheally infected with A. pleuropneumoniae, pigs pretreated with Ad-5/IL-10 showed a significant reduction in the amount of lung damage when compared to adenovirus type 5- expressing β-galactosidase (Ad-5/β-Gal)-treated and untreated pigs. In addition, serum zinc levels were unchanged, the lung weight/body weight ratio (an indicator of vascular leakage) was significantly reduced, and lung pathology scores were reduced. Myeloperoxidase activity in lung lavage fluid samples, an indicator of neutrophil invasion, was decreased to levels similar to that seen in pigs not infected with A. pleuropneumoniae. Reduction in inflammatory cytokine levels in lung lavage fluid samples correlated with the clinical observations in that pigs pretreated with Ad-5/IL-10 showed a corresponding reduction of IL-1 and tumor necrosis factor (TNF) compared with untreated and Ad-5/β-Gal-treated pigs. IL-6 levels were unaffected by pretreatment with Ad-5/IL-10, consistent with observations that IL-6 was not derived from alveolar macrophages. Since inflammatory cytokines are expressed at high levels in acute bacterial pleuropneumonia, these results indicate that macrophage activation, involving overproduction of IL-1 and TNF, is a prime factor in infection-related cases of massive lung injury.

Original languageEnglish (US)
Pages (from-to)4752-4758
Number of pages7
JournalInfection and immunity
Issue number8
StatePublished - 2000


Dive into the research topics of 'Interleukin-10 gene therapy-mediated amelioration of bacterial pneumonia'. Together they form a unique fingerprint.

Cite this