Intergranular giant magnetoresistance in a spontaneously phase separated perovskite oxide

J. Wu, J. W. Lynn, C. J. Glinka, J. Burley, H. Zheng, J. F. Mitchell, C. Leighton

Research output: Contribution to journalArticle

143 Citations (Scopus)

Abstract

We present small-angle neutron scattering data proving that, on the insulating side of the metal-insulator transition, the doped perovskite cobaltite La1-xSrxCoO3 phase separates into ferromagnetic metallic clusters embedded in a nonferromagnetic matrix. This induces a hysteretic magnetoresistance, with temperature and field dependence characteristic of intergranular giant magnetoresistance (GMR). We argue that this system is a natural analog to the artificial structures fabricated by depositing nanoscale ferromagnetic particles in a metallic or insulating matrix; i.e., this material displays a GMR effect without the deliberate introduction of chemical interfaces.

Original languageEnglish (US)
Article number037201
JournalPhysical Review Letters
Volume94
Issue number3
DOIs
StatePublished - Jan 28 2005

Fingerprint

oxides
matrices
neutron scattering
temperature distribution
insulators
analogs
temperature dependence
metals

Cite this

Intergranular giant magnetoresistance in a spontaneously phase separated perovskite oxide. / Wu, J.; Lynn, J. W.; Glinka, C. J.; Burley, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.

In: Physical Review Letters, Vol. 94, No. 3, 037201, 28.01.2005.

Research output: Contribution to journalArticle

Wu, J. ; Lynn, J. W. ; Glinka, C. J. ; Burley, J. ; Zheng, H. ; Mitchell, J. F. ; Leighton, C. / Intergranular giant magnetoresistance in a spontaneously phase separated perovskite oxide. In: Physical Review Letters. 2005 ; Vol. 94, No. 3.
@article{7f84bdd7ee3f4e0390861a7838bd60c1,
title = "Intergranular giant magnetoresistance in a spontaneously phase separated perovskite oxide",
abstract = "We present small-angle neutron scattering data proving that, on the insulating side of the metal-insulator transition, the doped perovskite cobaltite La1-xSrxCoO3 phase separates into ferromagnetic metallic clusters embedded in a nonferromagnetic matrix. This induces a hysteretic magnetoresistance, with temperature and field dependence characteristic of intergranular giant magnetoresistance (GMR). We argue that this system is a natural analog to the artificial structures fabricated by depositing nanoscale ferromagnetic particles in a metallic or insulating matrix; i.e., this material displays a GMR effect without the deliberate introduction of chemical interfaces.",
author = "J. Wu and Lynn, {J. W.} and Glinka, {C. J.} and J. Burley and H. Zheng and Mitchell, {J. F.} and C. Leighton",
year = "2005",
month = "1",
day = "28",
doi = "10.1103/PhysRevLett.94.037201",
language = "English (US)",
volume = "94",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "3",

}

TY - JOUR

T1 - Intergranular giant magnetoresistance in a spontaneously phase separated perovskite oxide

AU - Wu, J.

AU - Lynn, J. W.

AU - Glinka, C. J.

AU - Burley, J.

AU - Zheng, H.

AU - Mitchell, J. F.

AU - Leighton, C.

PY - 2005/1/28

Y1 - 2005/1/28

N2 - We present small-angle neutron scattering data proving that, on the insulating side of the metal-insulator transition, the doped perovskite cobaltite La1-xSrxCoO3 phase separates into ferromagnetic metallic clusters embedded in a nonferromagnetic matrix. This induces a hysteretic magnetoresistance, with temperature and field dependence characteristic of intergranular giant magnetoresistance (GMR). We argue that this system is a natural analog to the artificial structures fabricated by depositing nanoscale ferromagnetic particles in a metallic or insulating matrix; i.e., this material displays a GMR effect without the deliberate introduction of chemical interfaces.

AB - We present small-angle neutron scattering data proving that, on the insulating side of the metal-insulator transition, the doped perovskite cobaltite La1-xSrxCoO3 phase separates into ferromagnetic metallic clusters embedded in a nonferromagnetic matrix. This induces a hysteretic magnetoresistance, with temperature and field dependence characteristic of intergranular giant magnetoresistance (GMR). We argue that this system is a natural analog to the artificial structures fabricated by depositing nanoscale ferromagnetic particles in a metallic or insulating matrix; i.e., this material displays a GMR effect without the deliberate introduction of chemical interfaces.

UR - http://www.scopus.com/inward/record.url?scp=18044377769&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=18044377769&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.94.037201

DO - 10.1103/PhysRevLett.94.037201

M3 - Article

AN - SCOPUS:18044377769

VL - 94

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 3

M1 - 037201

ER -