Interferon-γ activates nuclear factor-κ B in oligodendrocytes through a process mediated by the unfolded protein response

Yifeng Lin, Stephanie Jamison, Wensheng Lin

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Our previous studies have demonstrated that the effects of the immune cytokine interferon-γ (IFN-γ) in immune-mediated demyelinating diseases are mediated, at least in part, by the unfolded protein response (UPR) in oligodendrocytes. Data indicate that some biological effects of IFN-γ are elicited through activation of the transcription factor nuclear factor-κB (NF-κB). Interestingly, it has been shown that activation of the pancreatic endoplasmic reticulum kinase (PERK) branch of the UPR triggers NF-κB activation. In this study, we showed that IFN-γ-induced NF-κB activation was associated with activation of PERK signaling in the oligodendroglial cell line Oli-neu. We further demonstrated that blockage of PERK signaling diminished IFN-γ-induced NF-κB activation in Oli-neu cells. Importantly, we showed that NF-κB activation in oligodendrocytes correlated with activation of PERK signaling in transgenic mice that ectopically express IFN-γ in the central nervous system (CNS), and that enhancing IFN-γ-induced activation of PERK signaling further increased NF-κB activation in oligodendrocytes. Additionally, we showed that suppression of the NF-κB pathway rendered Oli-neu cells susceptible to the cytotoxicity of IFN-γ, reactive oxygen species, and reactive nitrogen species. Our results indicate that the UPR is involved in IFN-γ-induced NF-κB activation in oligodendrocytes and suggest that NF-κB activation by IFN-γ represents one mechanism by which IFN-γ exerts its effects on oligodendrocytes in immune-mediated demyelinating diseases.

Original languageEnglish (US)
Article numbere36408
JournalPloS one
Issue number5
StatePublished - May 4 2012

Fingerprint Dive into the research topics of 'Interferon-γ activates nuclear factor-κ B in oligodendrocytes through a process mediated by the unfolded protein response'. Together they form a unique fingerprint.

Cite this