Projects per year
Abstract
The floating gate, electrolyte-gated transistor (FGT) is a chemical sensing device utilizing a floating gate electrode to physically separate and electronically couple the active sensing area with the transistor. The FGT platform has yielded promising results for the detection of DNA and proteins, but questions remain regarding its fundamental operating mechanism. Using carboxylic acid-terminated self-assembled monolayers (SAMs) exposed to solutions of different pH, we create a charged surface and hence characterize the role that interfacial charge concentration plays relative to capacitance changes. The results agree with theoretical predictions from conventional double-layer theory, rationalizing nonlinear responses obtained at high analyte concentrations in previous work using the FGT architecture. Our study elucidates an important effect in the sensing mechanism of FGTs, expanding opportunities for the rational optimization of these devices for chemical and biochemical detection.
Original language | English (US) |
---|---|
Pages (from-to) | 1335-1339 |
Number of pages | 5 |
Journal | Journal of Physical Chemistry Letters |
Volume | 9 |
Issue number | 6 |
DOIs | |
State | Published - Mar 15 2018 |
Bibliographical note
Publisher Copyright:© 2018 American Chemical Society.
MRSEC Support
- Shared
PubMed: MeSH publication types
- Journal Article
Fingerprint
Dive into the research topics of 'Interfacial Charge Contributions to Chemical Sensing by Electrolyte-Gated Transistors with Floating Gates'. Together they form a unique fingerprint.Projects
- 3 Finished
-
MRSEC IRG-3: Hierarchical Multifunctional Macromolecular Materials
Reineke, T. M. (Coordinator), Bates, F. S. (Senior Investigator), Dorfman, K. (Senior Investigator), Dutcher, C. S. (Senior Investigator), Hillmyer, M. A. (Senior Investigator), Lodge, T. P. (Senior Investigator), Morse, D. C. (Senior Investigator), Siepmann, I. (Senior Investigator), Barreda, L. (Researcher) & Ganewatta, M. S. (Researcher)
11/1/14 → 10/31/20
Project: Research project
-
MRSEC IRG-1: Electrostatic Control of Materials
Leighton, C. (Coordinator), Birol, T. (Senior Investigator), Fernandes, R. M. (Senior Investigator), Frisbie, D. (Senior Investigator), Goldman, A. M. (Senior Investigator), Greven, M. (Senior Investigator), Jalan, B. (Senior Investigator), Koester, S. J. (Senior Investigator), He, T. (Researcher), Jeong, J. S. (Researcher), Koirala, S. (Researcher), Paul, A. (Researcher), Thoutam, L. R. (Researcher) & Yu, G. (Researcher)
11/1/14 → 10/31/20
Project: Research project
-
University of Minnesota MRSEC (DMR-1420013)
Lodge, T. P. (PI)
11/1/14 → 10/31/20
Project: Research project