Interdependency of CEACAM-1, -3, -6, and -8 induced human neutrophil adhesion to endothelial cells

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Members of the carcinoembryonic antigen family (CEACAMs) are widely expressed, and, depending on the tissue, capable of regulating diverse functions including tumor promotion, tumor suppression, angiogenesis, and neutrophil activation. Four members of this family, CEACAM1, CEACAM8, CEACAM6, and CEACAM3 (recognized by CD66a, CD66b, CD66c, and CD66d mAbs, respectively), are expressed on human neutrophils. CD66a, CD66b, CD66c, and CD66d antibodies each increase neutrophil adhesion to human umbilical vein endothelial cell monolayers. This increase in neutrophil adhesion caused by CD66 antibodies is blocked by CD18 mAbs and is associated with upregulation of CD11/CD18 on the neutrophil surface. To examine potential interactions of CEACAMs in neutrophil signaling, the effects on neutrophil adhesion to human umbilical vein endothelial cells of a set of CD66 mAbs was tested following desensitization to stimulation by various combinations of these mAbs. Addition of a CD66 mAb in the absence of calcium results in desensitization of neutrophils to stimulation by that CD66 mAb. The current data show that desensitization of neutrophils to any two CEACAMs results in selective desensitization to those two CEACAMs, while the cells remain responsive to the other two neutrophil CEACAMs. In addition, cells desensitized to CEACAM-3, -6, and -8 were still responsive to stimulation of CEACAM1 by CD66a mAbs. In contrast, desensitization of cells to CEACAM1 and any two of the other CEACAMs left the cells unresponsive to all CD66 mAbs. Cells desensitized to any combination of CEACAMs remained responsive to the unrelated control protein CD63. Thus, while there is significant independence of the four neutrophil CEACAMs in signaling, CEACAM1 appears to play a unique role among the neutrophil CEACAMs. A model in which CEACAMs dimerize to form signaling complexes could accommodate the observations. Similar interactions may occur in other cells expressing CEACAMs.

Original languageEnglish (US)
Article number78
JournalJournal of Translational Medicine
Volume6
DOIs
StatePublished - Dec 10 2009

Bibliographical note

Funding Information:
Supported in part by the American Heart Association, Minnesota Affiliate, NIH grant CA60658, the Office of the Vice President for Research and Dean of the Graduate School of the University of Minnesota, the Minnesota Medical Foundation, and the Masonic Memorial Hospital Fund, Inc.

Fingerprint

Dive into the research topics of 'Interdependency of CEACAM-1, -3, -6, and -8 induced human neutrophil adhesion to endothelial cells'. Together they form a unique fingerprint.

Cite this