Integrating DNA sequencing and transcriptomic data for association analyses of low-frequency variants and lipid traits

Tianzhong Yang, Chong Wu, Peng Wei, Wei Pan

Research output: Contribution to journalArticle

1 Scopus citations


Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and transcriptomic data to showcase their improved statistical power of identifying gene-trait associations while, importantly, offering further biological insights. TWAS have thus far focused on common variants as available from GWAS. Compared with common variants, the findings for or even applications to low-frequency variants are limited and their underlying role in regulating gene expression is less clear. To fill this gap, we extend TWAS to integrating whole genome sequencing data with transcriptomic data for low-frequency variants. Using the data from the Framingham Heart Study, we demonstrate that low-frequency variants play an important and universal role in predicting gene expression, which is not completely due to linkage disequilibrium with the nearby common variants. By including low-frequency variants, in addition to common variants, we increase the predictivity of gene expression for 79% of the examined genes. Incorporating this piece of functional genomic information, we perform association testing for five lipid traits in two UK10K whole genome sequencing cohorts, hypothesizing that cis-expression quantitative trait loci, including low-frequency variants, are more likely to be trait-associated. We discover that two genes, LDLR and TTC22, are genome-wide significantly associated with low-density lipoprotein cholesterol based on 3203 subjects and that the association signals are largely independent of common variants. We further demonstrate that a joint analysis of both common and low-frequency variants identifies association signals that would be missed by testing on either common variants or low-frequency variants alone.

Original languageEnglish (US)
Pages (from-to)515-526
Number of pages12
JournalHuman molecular genetics
Issue number3
StatePublished - Feb 1 2020

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

Fingerprint Dive into the research topics of 'Integrating DNA sequencing and transcriptomic data for association analyses of low-frequency variants and lipid traits'. Together they form a unique fingerprint.

  • Cite this