Intake of high-fat food is selectively enhanced by Mu opioid receptor stimulation within the nucleus accumbens

Min Zhang, Blake A. Gosnell, Ann E. Kelley

Research output: Contribution to journalArticlepeer-review

301 Scopus citations

Abstract

The present study was designed to further investigate the nature of feeding induced by opioid stimulation of the nucleus accumbens through an examination of the effects of intra-accumbens (ACB) opioids on macronutrient selection. In 3-hr tests of free-feeding (satiated) rats, intra-ACB administration of the mu receptor agonist D-Ala2,N,Me-Phe4,Gly-ol5- enkephalin (DAMGO; 0, 0.025, 0.25 and 2.5 μg bilaterally) markedly enhanced the intake of fat or carbohydrate when the diets were presented individually (although the effect on fat intake was much greater in magnitude). Intra-ACB injections of DAMGO, however, produced potent preferential stimulatory effects on fat ingestion with no effect on carbohydrate ingestion when both fat and carbohydrate diets were present simultaneously. Moreover, this selective stimulation of fat intake was independent of base-line diet preference and could be blocked by systemic injection of naltrexone (5 mg/kg). We also examined the effect of 24-hr food deprivation on the pattern of macronutrient intake in rats with access to both carbohydrate and fat. In contrast to the DAMGO-induced selective enhancement of fat intake, food deprivation significantly increased the intake of both diets to the same extent; however, in this case, only the stimulated fat intake was blocked by systemic naltrexone. In- tra-ACB administration of DAMGO in hungry rats produced an effect similar to that observed in free-feeding rats; preference was strongly shifted to fat intake. Similarly, the opioid antago- nist naltrexone (20 μg) infused directly into ACB preferentially decreased fat intake in hungry rats. These findings suggest that endogenous opioids within the ventral striatum may participate in the mechanisms governing preferences for highly palatable foods, especially those rich in fat.

Original languageEnglish (US)
Pages (from-to)908-914
Number of pages7
JournalJournal of Pharmacology and Experimental Therapeutics
Volume285
Issue number2
StatePublished - 1998
Externally publishedYes

Fingerprint

Dive into the research topics of 'Intake of high-fat food is selectively enhanced by Mu opioid receptor stimulation within the nucleus accumbens'. Together they form a unique fingerprint.

Cite this