Insulin receptor substrate adaptor proteins mediate prognostic gene expression profiles in breast cancer

Marc A. Becker, Yasir H. Ibrahim, Annabell S. Oh, Dedra H. Fagan, Sara A. Byron, Aaron L. Sarver, Adrian V. Lee, Leslie M. Shaw, Cheng Fan, Charles M. Perou, Douglas Yee

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer.

Original languageEnglish (US)
Article numbere0150564
JournalPloS one
Issue number3
StatePublished - Mar 2016

Bibliographical note

Funding Information:
This work was supported by a BCRF-AACR Grant for Translational Breast Cancer Research 07-60-26 (DY), Department of Defense Predoctoral Traineeship Award BC073039 (MAB), and the National Cancer Institute Cancer Center Support Grant P30 077598. We extend our appreciation to Eva Feldman for the use of the IRS overexpressing SH-EP human neuroblastoma cells.

Publisher Copyright:
© 2016 Becker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Dive into the research topics of 'Insulin receptor substrate adaptor proteins mediate prognostic gene expression profiles in breast cancer'. Together they form a unique fingerprint.

Cite this