Insights into fluid flow and water-rock interaction during deformation of carbonate sequences in the Mexican fold-thrust belt

Elisa Fitz-Diaz, Peter Hudleston, Luc Siebenaller, David Kirschner, Antoni Camprubí, Gustavo Tolson, Teresa Pi Puig

Research output: Contribution to journalArticlepeer-review

67 Scopus citations


Analysis of mesoscopic structures and related veins allows the history of deformation and role of fluids to be established for part of the central Mexican Fold-Thrust Belt (MFTB). The MFTB developed in mostly carbonate rocks with prominent lateral facies changes associated with two platforms and two basins. Fluids played a key role in the deformation, both physically and chemically, by reducing strength and inducing extensional fracturing through raised pore pressure and by providing the medium for solution transfer on the grain-scale. Veins preserve portions of water related to deformation as fluid inclusions. Lithology and lithological variations strongly control deformation styles, with thrusts dominant in the platforms and folds dominant in the basins, and also influence fluid behavior by controlling both porosity and permeability. Structural observations allow distinguishing veins (dominantly calcite) of several generations, emplaced early, during and late/after deformation (V1-V3 respectively). δ13C and δ18O analyses in calcite from veins and host rock show that the veins confined within thrust slices are isotopically buffered by the host rock and differ in isotopic composition from veins emplaced along major thrusts or crosscutting thrust slices. δD analyses in fluid inclusions and clay minerals strongly suggest rock interaction with meteoric fluids in the west (hinterland) and with fluids close to SMOW in the less deformed eastern (foreland) side of the cross-section. By focusing on a single stratigraphic interval exposed across the width of the fold-thrust belt, we propose a conceptual model that explains the differences in vein-rock isotopic composition, the differences of in isotopic composition of aqueous fluids active during deformation, and the progression of clay dehydration reactions as being related to variations in temperature and intensity of deformation in a growing tectonic wedge.

Original languageEnglish (US)
Pages (from-to)1237-1253
Number of pages17
JournalJournal of Structural Geology
Issue number8
StatePublished - Aug 2011

Bibliographical note

Funding Information:
This paper is part of the PhD dissertation at the University of Minnesota of the first author, who thanks CONACyT for sponsoring the first three years of her doctoral study. We thank the Universidad Nacional Autónoma de México (PAPIIT grant 1210063 ), and the University of Minnesota for financial support in carrying out this research. We also thank Saint Louis University and the Université de Lausanne for allowing us to use their facilities for stable isotope analysis, which was essential for this project. We thank Torsten Vennemann for his useful suggestions and insight during lab work at Lausanne. We acknowledge the help provided by Jaime Díaz Ortega during clay separation. Finally, we thank Kieran O’Hara and David Wiltschko for their most helpful reviews.


  • Carbonate platform
  • Fluid flow
  • Fluid inclusion
  • Fold-thrust belt
  • Illite-smectite
  • Stable isotope


Dive into the research topics of 'Insights into fluid flow and water-rock interaction during deformation of carbonate sequences in the Mexican fold-thrust belt'. Together they form a unique fingerprint.

Cite this