TY - JOUR
T1 - Innervation of cutaneous structures in the mouse hind paw
T2 - A confocal microscopy immunohistochemical study
AU - Navarro, X.
AU - Verdú, E.
AU - Wendelschafer‐Crabb, G.
AU - Kennedy, W. R.
PY - 1995/5/1
Y1 - 1995/5/1
N2 - The normal innervation of structures in mouse foot pads was investigated with immunohistochemistry and confocal microscopy. Nerves were visualized by incubating Zamboni fixed, thick, frozen sections with antibodies to protein gene product 9.5 (PGP 9.5), vasoactive intestinal peptide, substance P, calcitonin gene‐related peptide, and protein zero. The antibodies were localized using cyanine 3.18 labeled anti‐rabbit gamma globulin. PGP 9.5 immunolocalization showed dense nerve bundles at the base of the foot pad with branches to larger blood vessels, sweat glands and epidermis. Sweat gland tubules were surrounded by numerous sudomotor axons; single fibers accompanied the sweat duct toward the skin's surface. Nerve bundles containing myelinated and unmyelinated axons ran through and around the centrally located sweat gland cluster to end in free nerve endings and Meissner's‐like corpuscles at the apex of the foot pad. Other bundles running parallel to the epidermis gave arcuate branches that supplied epidermis on the sides of the pads with a rich nerve network, principally with free nerve endings that often reached the most superficial cell layers of epidermis. Calcitonin gene‐related peptide‐immunoreactive (‐ir) nerves were distributed to dermis and epidermis in lower density than PGP 9.5‐ir fibers. Substance P‐ir fibers were less numerous; most terminated as free endings in deeper layers of epidermis. Vasoactive intestinal peptide‐ir nerves almost exclusively innervated sweat glands, ducts and blood vessels, but not epidermis. The mouse hind paw has potential to serve as a model system for investigations of functional and morphological changes that affect peripheral and au tonomic nerves under diverse experimental conditions. © 1995 Wiley‐Liss, Inc.
AB - The normal innervation of structures in mouse foot pads was investigated with immunohistochemistry and confocal microscopy. Nerves were visualized by incubating Zamboni fixed, thick, frozen sections with antibodies to protein gene product 9.5 (PGP 9.5), vasoactive intestinal peptide, substance P, calcitonin gene‐related peptide, and protein zero. The antibodies were localized using cyanine 3.18 labeled anti‐rabbit gamma globulin. PGP 9.5 immunolocalization showed dense nerve bundles at the base of the foot pad with branches to larger blood vessels, sweat glands and epidermis. Sweat gland tubules were surrounded by numerous sudomotor axons; single fibers accompanied the sweat duct toward the skin's surface. Nerve bundles containing myelinated and unmyelinated axons ran through and around the centrally located sweat gland cluster to end in free nerve endings and Meissner's‐like corpuscles at the apex of the foot pad. Other bundles running parallel to the epidermis gave arcuate branches that supplied epidermis on the sides of the pads with a rich nerve network, principally with free nerve endings that often reached the most superficial cell layers of epidermis. Calcitonin gene‐related peptide‐immunoreactive (‐ir) nerves were distributed to dermis and epidermis in lower density than PGP 9.5‐ir fibers. Substance P‐ir fibers were less numerous; most terminated as free endings in deeper layers of epidermis. Vasoactive intestinal peptide‐ir nerves almost exclusively innervated sweat glands, ducts and blood vessels, but not epidermis. The mouse hind paw has potential to serve as a model system for investigations of functional and morphological changes that affect peripheral and au tonomic nerves under diverse experimental conditions. © 1995 Wiley‐Liss, Inc.
KW - immunohistochemistry
KW - protein gene product 9.5
KW - sensory nerves
KW - skin
KW - sweat glands
UR - http://www.scopus.com/inward/record.url?scp=0029057402&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029057402&partnerID=8YFLogxK
U2 - 10.1002/jnr.490410113
DO - 10.1002/jnr.490410113
M3 - Article
C2 - 7545760
AN - SCOPUS:0029057402
SN - 0360-4012
VL - 41
SP - 111
EP - 120
JO - Journal of Neuroscience Research
JF - Journal of Neuroscience Research
IS - 1
ER -